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ABSTRACT
In this paper, we analyze the neighborhood effect in the
selection of parents on an evolutionary algorithm. In this line,
we compare a cellular genetic algorithm (cGA), which intrinsi-
cally uses the neighbor notion in the mating process, with
a modified genetic algorithm including the concept of neigh-
borhood in the selection of parents. Additionally, we analyze
the neighborhood size considered for the selection of parent,
trying to discover if a quasi-optimal size exists. All the analysis
is carried out from a traditional analytic sense to a theoretical
point of view regarding evolvability measures. The experimen-
tal results suggest that the neighbor effect is important in the
performance of an evolutionary algorithm and could provide
the cGA with higher chances of success in well-known optimi-
zation problems. Regarding the neighborhood size, there is an
evidence that a range of neighbors of six, plus/minus two,
individuals leads to the cGA to perform more efficiently than
other considered sizes.

Introduction

Most EAs maintain panmictic populations (single population of individuals),
in which there are no particular structures: genetic operators are applied on
them as a whole. On the other hand, there exist structured EAs, in which the
population is decentralized and any given individual interacts with a smaller
set of individuals (denominated neighborhood). This neighborhood is smal-
ler, sometimes much smaller, than the size of the population. There are two
main ways for structuring the population in EAs, namely distributed EAs
(dEAs), and cellular EAs (cEAs) (Alba and Dorronsoro 2008b). In Figure 1
we show the typical population structures of an EA with centralized popula-
tion or panmixia -Figure 1a)-, a decentralized EA -Figure 1b)-, and a cellular
EA -Figure 1c). In this work, we concentrate our attention to cEAs.

In cEAs the concept of (small) neighborhood is intensively used; this means that
an individualmay only interact with its nearby neighbors in the breeding loop. The
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overlapped small neighborhoods of cEAs help to explore the search space because
the induced slow diffusion of solutions through the population provides a kind of
exploration (diversification), while exploitation (intensification) takes place inside
each neighborhood by genetic operations (Alba and Dorronsoro 2008a). In fact,
adding neighborhoods to EAs take them mostly to the domain of swarm intelli-
gence algorithms,where an emergent behavior comes out of the new configuration
of the algorithm, much in the sense of other swarm techniques (Sudholt 2017;
Tomassini 2005).

If we think the population of an EA in terms of graphs (Alba and Dorronsoro
2008b), being the individuals the vertices of the graph and their potential relation-
ships the edges, a panmictic EA is a completely connected graph (see Figure 2a).
On the other hand, a cEA is a lattice graph, as one individual can only interact with
its nearest neighbors, for example, in Figure 2b) each individual has eight
neighbors.

The concept of neighborhood seems to play an important role. However, we
actually do not have any clue on which size of the neighborhood is the best choice,
or if the successful issue is the use of a neighborhood topology at all, or maybe the
fact that only a few individuals are used. All these questionsmotivated us to explore
in depth the benefits of using neighborhoods as well as to analyze different
topology configurations. Therefore, the objective of this article is to discover
whether a quasi-optimal arrangement of neighbors exists in the topology or if
the use of a neighborhood is actually promoting a higher probability of escaping
from local optima. Then, our initial hypothesis is that nontraditional neighbor-
hood structures, where individuals can only interact with their closest neighbors in
the population, may provide new essential information about the search process,
hence leading the cEA to perform more efficiently than the use of traditional

Figure 2. Connectivity graph among individuals for panmictic (a), and cellular EAs (b).
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neighborhood configurations, for a number of well-known optimization
problems.

For this purpose,we have designed a variation of a traditional cEA that uses aC9
(compact nine) neighborhood shape (one of the most commonly used neighbor-
hoods Alba and Dorronsoro 2008a; Jie et al. 2017; Whitley 1993), but having as
a free parameter the number of considered direct neighbors fromwhich the second
parent is selected (the first parent is always the center of the considered neighbor-
hood). As the main loop of the cEA corresponds to a genetic algorithm (GA), we
have denominated this algorithm as cGAkt. Themethodology devised in this work
is targeted to characterize algorithms regarding the structure or conformation of
the neighborhood and to generalize the number of neighbors used in a cGAkt, and
it can be summarized as follows. We evaluate a cGAkt. with all possible configura-
tions of neighborhood sizes. We then will compare this algorithm against
a panmictic GA incorporating the concept of neighbor for the parent selection
with a free conformation of the neighborhood (at random) and a panmictic GA.
The planned analyses and comparisons will help us to claim if the neighborhood
configuration leads the algorithm to increase its success rate and to obtain good
quality solutions in a lower number of evaluations. In order to get some mean-
ingful conclusions, we present some studies from several angles between theory
and experimentation, thus giving a better insight into the internal behavior of each
algorithm not only using static metrics but also from a dynamical point of view.
This work extends the analysis carried out in Alba and Dorronsoro (2008a) where
cellular GAs are compared to panmictic GAs and distributed GAs to show the
effects of structuring a population, but how the neighborhood sizes affect the
performance of a cGA was not considered in this preliminary work. Moreover,
other previous studies lye on particle swarm optimization (PSO) and the number
of informants (García and Alba 2012, 2015). The intention of the present article is
to analyze whether there is an effect in the performance of a cGA regarding the size
of the neighborhood. So this is new: another metaheuristic is analyzed in order to
determine if the observation on PSO also hold in cGAs.

The remainder of this article is structured as follows. Section 2 presents the
cGAk and describes the modified GA to include the neighbor concept. Section 3
introduces the test problem and the parameterizations used in the experimenta-
tion. Section 4 presents and examines the results validating our proposal. Section 5
summarizes our conclusions and sketches our future work.

Proposals

In this section, a basic cGAk is described. The possibility of considering
different neighborhood sizes enables us to generalize the number of
neighbors, from 1 to k+1(being k the size of the neighborhood shape
without considering the central individual). Therefore, a number of
different versions of cGAs can be generated, each one of them with
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neighborhoods containing k individuals at distance one of the current
individual. These cGA variants will be later experimentally compared
versus the genGAk by incorporating the idea of neighborhood in the
selection of parents for mating. We will include in our study the well-
known panmictic GA where individuals can mate with any other indi-
vidual in the population. Last section discusses on genGAk, a hybrid step
between a generational panmictic GA and a cellular GA. In genGAk we
also use the concept of neighborhoods, but dynamically and randomly
(uniformly) defined on a given individual every time that the evolution-
ary loop is computed.

The cGAk Algorithm

Algorithm 1 cGA with k neighbors (cGAk)

1: t = 0; {current evaluation}

2: initialize(Pop);

3: evaluate(Pop);

4: while (t<maxgenerations) do

5: for (i=1, i< pop size, i++) do

6: K = select_neighboor(Pop½i�; k); {random selection of neighbor-
hood K with k individuals from C9, k in [2; . . . ; 8}

7: parent = select(K); {select the second parent by binary tourna-
ment selection}

8: offspring = recombine(Pop½i�; parent; pc); {only one child is
generated}

9: offspring = mutate(offspring; pm);

10: Pop aux[i] = replace(Pop[i],offspring); {select offspring if it is equal or
better than Pop[i], in other case Pop[i] goes to next generation}

11: end for

12: Pop = Pop aux;

13: t = t + 1;

14: end while

15: return (best individual from Pop);

As previously mentioned, we will consider in this work a cGA with k
neighbors (cGAk for short), where an individual may only interact with its
direct neighbors at distance one in the breeding loop. The neighborhood
shape used in this work is the C9 Alba and Dorronsoro (2008a) which
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contains the eight nearest individuals to the considered one (in horizontal,
vertical, and diagonal directions), as shown in Figure 3a. The pseudocode of
cGAk is introduced in Algorithm 1. As a traditional cGA, it starts by
generating and evaluating an initial population. During the reproductive
cycle, for each individual i (first parent) in the population, a set of kneighbors
(Kt

i ) randomly selected from C9 neighborhood shape without repetition is
generated. The other parent is chosen from Kt

i according to binary tourna-
ment selection (Miller and Goldberg 1995), which involves running
a tournament between two individuals chosen at random from the Kt

i ,
being the winner the individual with the best fitness. After that, the variation
operators (recombination and mutation) are applied to them, and the con-
sidered individual i is replaced by the recently created offspring if the new
one represents a better solution than the considered individual. The already
mentioned genetic operators (selection, recombination, mutation, and repla-
cement) are iteratively applied to each individual until the termination
condition is met. In Figure 3a we can see how the reproductive cycle is
applied in the neighborhood of an individual in the cGAk. Therefore, the
principal difference with a canonical cGA lies in the confirmation of the
neighborhood Kt

i of each individual i.
The presented cGAk corresponds to a synchronous (cGA Alba 2005),

as the individuals composing the population of the next generation are
stored in an auxiliary population and, when completed, replace in an
atomic step the current population. Therefore, in this model all the
individuals in the population are updated simultaneously and, equiva-
lently, the creation of individuals is made only from the individuals in
the current population (not merging solutions created in different gen-
erations of the previous search).

Figure 3. Reproductive cycle of each individual in a cellular GA (a) and a panmictic GA (b) with
k ¼ 3.
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The genGAk Algorithm

For comparison purposes, and also for analyzing how the neighborhood confor-
mation and size affect the success of the GAs, we have propose in this work a new
GA, as a means to restrict the interaction of the individuals to a subset of them in
the reproductive cycle, similar as a cGA does. In general, they take the whole
current population into account and the choices for mating purposes of a given
individual always consider k individuals selected from all the rest of individuals,
without restriction. We name this algorithm as genGAk. Indeed, we propose to
analyze the behavior of the genGAk, where each individual in the population is
selected to be parent, but for each of them, the second one is selected from
a neighbor of k random (uniform) individuals of the population (Pop), by using
binary tournament selection (see Figure 3b). Using this approach, for each indi-
vidual i, and at each generation t, a different subset (Kt

i ) with k individuals is
generated. Formally, we can represent that subset as shown in Equation 1.

Kt
i ¼ fn1; n2; . . . ; nKgjKt

i � Pop;"nj; nh 2 Kt
i nj�nh�i (1)

Algorithm 2 presents the pseudocode of genGAk to show the changes intro-
duced to a traditional GA. Lines 6 to 8 show the significative differences with
a traditional GA. The first step (Line 6) consists of the random selection of k
individuals (from the whole population) to define the neighbor Kt

i for the indivi-
dual i (first parent). After that, the second parent is selected from this neighbor Kt

i

by using binary tournament selection (Line 7). Finally, the second parent and the
individual i are recombined and only one offspring is generated. Therefore,
genGAk has two principal differences with a traditional GA: the selection operator
for mating does not work at population level and all individuals in the population
participate in the mating loop as the first parent.

Algorithm 2 Genetic Algorithm with k neighbors (genGAk)

1: t = 0; {current evaluation}

2: initialize(Pop);

3: evaluate(Pop);

4: while (t<maxgenerations) do

5: for (i=1, i< pop size, i++) do

6: K = select_neighboor(Pop; k); {random selection of neighborhood
K with k individuals}

7: parent = select(K); {select the second parent by binary tournament
selection}

8: offspring = recombine(Pop½i�; parent; pc); {only one child is
generated}

9: offspring = mutate(offspring; pm);
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10: Pop aux[i] = replace(Pop[i],offspring); {select offspring if it is equal or
better than Pop[i], in other case Pop[i] goes to next generation}

11: end for

12: Pop = Pop aux;

13: t = t + 1;

14: end while

15: return (best individual from Pop);

Experimental Setup

In this section, we present the necessary information to reproduce the
experiments that have been carried out in this article. First, we will introduce
the problems used to assess the performance of our proposals. Second, we
will justify the parameters that the algorithms (cGAk and genGAk) will use.

Problems

In this section, we present the set of problems chosen for our study. The
benchmark is composed of combinatorial problems with many different
features in the optimization domain, such as epistasis, multimodality, pro-
blem generators, or parameter fitting. This guarantees a high level of con-
fidence in the results. The problems used are the following ones: OneMax
(Schaffer and Eshelman 1991) (or BitCounting)-instance with 500 bits-;
P-PEAKS problem (Jong et al. 1997), with 300 peaks; the Maximum Cut of
a Graph (MAXCUT) problem (Khuri, Bäck, and Heitkötter 1994) -instance
with 20 vertices-; and Minimum Tardy Task Problem (MTTP) Stinson
(1985) -instance of 100 tasks-. Table 1 presents for each of them the follow-
ing information: fitness function, number of variables (n), and optimal
solution (a detailed description on these problems can be found in Alba
and Dorronsoro 2008b). All of them are maximization problems.

Table 1. Benchmark of combinatorial optimization problems.
Problem Fitness function n Optimum

OneMax fOneMaxðxÞ ¼
Pn

i¼1 xi 500 500
MAXCUT fMAXCUTðxÞ ¼

Pn�1
i¼1

Pn
j¼iþ1 wij½xið1� xjÞ þ xjð1� xiÞ� 20 56.740064

P-PEAKS fP�PEAKSðxÞ ¼ 1
nmax1< i< pðN� HammingDðx; PeakiÞÞ 300 1.0

MTTP fMTTPðxÞ ¼
Pn

i¼1 xi � wi 100 0.005
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Parameters

In our experiments, the global pool of solutions of all the algorithms is set to
400 solutions. The tentative solutions for all the problems are encoded as
binary strings. One of the two parents is the current individual i and the
other one is selected from the neighborhood (Kt

i ) using binary tournament.
The bit flip mutation is applied to the child with a rate (pm) equals to 1=n
(where n is the length of the solutions). The stop condition is to find the
optimum fitness of each problem or to reach 106 evaluations. In the case of
genGAk, proportional selection is used to build up the next population from
the set of parent and offspring solutions. Specific parameters for the cGAk‘s
are the C9 neighborhood, and a lattice shape of 20� 20 individuals. Table 2
summarizes the parameters used in the experimentation. All parameter
values are taken from Alba and Dorronsoro (2008a), where the justification
is carried out. Notice that we are not using highly specialized cGAs and GAs,
since our goal is not to outperform other algorithms, for the considered
problems, but to analyze the influence of the different neighborhood sizes (k)
in the behavior of the proposed algorithms. The k values vary from 2 to 8,
but in the case of genGAk we also want to know the effect of increasing the k
value from 50 (incremented by 50) until reaching the population size; when
k=400 the genGAk behaves as a traditional GA.

The code was developed using JCELLAlba and Dorronsoro (2008b), a Java
software library for working with cEAs and GAs. The considered hardware
resource is an Intel I7 at 2.30 GHz, 6 GB of RAM, under Windows 7.

Due to the stochastic nature of the algorithms, we perform 50 independent
runs to get reliable statistical results. We use the non-parametric test, since
the resulting distributions could not follow the conditions of normality and
homoskedasticity (García et al. 2009). In particular, we have considered the
application of the Friedman’s ranking test, and used the Wilcoxon test as
post-hoc procedure.

Table 2. Experimental parameters of all GAs.
cGAk genGAk

Population Size 400 individuals
Parent Selection current individual + Binary tournament
Recombination Two-point, pc ¼ 1:0
Bit mutation Bit-flip, pm ¼ 1=n
Stop condition Find the optimum or reach 106 evaluations
Replacement Rep_if_not_Worse –
Neighborhood C9 –
Lattice 20� 20 –
Replacement – ðμþ λÞ-prop. selection
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Results

In this section, we first present an analysis concerning the computational
effort of the different neighborhood sizes (k) in cGAk and genGAk. Then,
additional analyses concerning some evolvability measures (such as fitness
distance analysis and escape probability) of each algorithm are performed.

Computational Effort

All the algorithms and for all neighborhood sizes were able to find the
optimum value for the considered problems. Therefore, we concentrate the
analysis in the numerical effort of each algorithm to locate that optimum
value, by measuring the number of evaluations of the objective function
made during the search. Figure 4 shows the distribution of the number of
evaluations for each algorithm.

Regardless of the neighborhood size, cGAk is the fastest algorithm (mini-
mum number of evaluations), meanwhile genGAk is the slowest one.
A traditional GA (genGA400) remains in an intermediate position. Except
for MAXCUT problem, in the rest of the problems genGAk with presents
a slight decrease in the number of evaluations compared to genGA with k
varying from 2 to 8. Moreover, cGA6 is the most promising cGAk variant: it
obtains quickly the optimum (lower number of mean evaluations) in the
majority of the problems. This observation is similar to the given one by
Garcia et al. (García and Alba 2012, 2015) in their study about PSO and the
number of informant neighbors, where they show that a number of infor-
mant particles lead the algorithm to perform more accurately than other
existing versions of it (the standard “two” and “all” PSO). Given that the
p-value of the Friedman test is lower than the level of significance considered
α ¼ 0:01, we can estate that there are significant differences among the
algorithms. Attending to this conclusion, Wilcoxon text, as a post-hoc
statistical analysis, helps to determine which groups of behavior are emerging
from the point of view of similar performance.

The Wilcoxon test generates groups of algorithms which are displayed in
Figure 5 (in addition to assign letters to the different mean groups as usually
does the test, we use a scale of grays in order to show more clearly the
information). The algorithms grouped in the same column do not show
significantly different results from each other. If overlapping of columns is
not observed, then the algorithms have significant differences. A common
observed behavior for all problems is that the cGAk algorithms belong to
groups which present significant statistical differences with genGAk. The
exception is the MAXCUT problem. Particularly, cGAk with k ¼ 6� 2 do
not present significant differences between them, as they lie in the same group.

872 C. SALTO AND E. ALBA



In the same line of reasoning, we can infer from these results that the
neighborhood topology also has an important impact on the computational
effort of the algorithm to solve the problems. There is a big difference
between using a restricted neighborhood, represented by the cGAk, and
using a panmictic EA incorporating the concept of neighbor for the parent
selection (genGAk algorithm), where the second parent is selected from the
whole population regardless of the distance in the population position of the
first parent.
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Figure 4. Box-plots of the number of evaluations required for the algorithms under different k
sizes to solve the problems.
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Fitness-Distance Analysis

In this section, we analyze an evolvability measure such as fitness-fitness
clouds. Consequently, before starting with the discussion of the results, we
describe it. Fitness-distance analysis quantifies the relation between the fit-
ness of the individuals f ðxiÞ in the landscape and its distances to the nearest
global optimum xopt Lu, Li, and Yao (2011). Fitness-distance correlation can
also be visualized with the fitness-distance plot, where the genotypic distance
of a solution to the optimum is plotted against their fitness.

Figure 6 presents the fitness-distance plots for the algorithms with k ¼ 6
(other k values present similar graphs). Due to the characteristics of the
OneMax problem, the distance to the optimum is inversely proportional to
the solution’s fitness value. Consequently, the shape of the curves are lines,
and no differences between the algorithms can be observed for this problem.
For MAXCUT, no correlation can be observed between genotypic distance
and fitness values, regardless of the algorithm used to solve the problem.
Many solutions with good fitness values (near the 56.5) having different
genotypic distances to the optimum (between 0 and 20) can be observed
(upper points in the graph). This observation suggests that the algorithms to
solve the MAXCUT may require stronger diversification mechanisms than
for the rest of the problems. For MTTP and P-PEAKS, a very strong negative
correlation can be observed. In the case of P-PEAKS, the right shapes like
bags have important differences in its heights and this is due to the good
quality of the solutions sampled by cGA6. In other words, the difference in
the bags indicates that the cGA6 sample many solutions with fitness near to
the optimum (points near to 1.0) but with high genotypic distance to that
optimum (average distances of 150). This happens because in many (hard)
problems, optima of the same fitness have different genotypic representation

Figure 5. Wilcoxon’s multiple range output.
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(are located in different parts of the search space). Regarding MTTP, genGA6
presents a thickening in the bottom left part of the correlation shape, mean-
ing that the algorithm samples more solutions not only with low fitness but
also with low genotypic diversity respect to the optimum. All these observa-
tions indicate that the cGAk sampling behavior is better in the amount of
solutions with good quality and close to the optimum value, endorsing the
idea that the use of structured neighborhoods helps in the optimization
process.

Escape Probability

An Escape Probability (ep) analysis studies the number of steps required to
escape from a local optimum. It is defined as PðfiÞ ¼ 1=Si, where Si denotes
the mean number of steps required to find an improving move starting in an
individual with fitness value fi. In our work, the escape probability for
a fitness value fi throughout the iteration process is computed as the average
of the improving intervals (measured in number of evaluations) of each new
individual with fitness value fi. If the escape probability is high for
a particular fitness value, then it is easy to improve the fitness quality.
Consequently, the escape probability PðfiÞ is a good indication of the degree
of evolvability for individuals of fitness value fi.

Figure 7 plots the Escape Probability (ep) for cGAk and genGAk (with k
equals to 6 because similar graphs are obtained with the rest of k values) for
all the problems. The horizontal axis shows the number of iterations of the
algorithm variants, whereas the vertical axis presents the PðfiÞ value com-
puted for the best solution found in iteration i of the algorithm. In all cases,
the cGA6 curve is shorter than the genGA6 one because cGA6 needs less
number of iterations to locate the optimum (as explained in Section 4.1). The
first evident conclusion is that, for all problems, cGAk has a higher ep value
than genGAk throughout the evolution, indicating that the use of structured
neighborhoods allows the algorithm to easily escape from local optimum.
This observation is congruent with the results shown in Section 4.1: the
cGAk obtains the optimum in less number of evaluations than genGAk for
all the problems, and this is because cGAk gets trapped in local optima less
frequently or for a less number of steps than genGAk (as evidenced by the
high ep values of cGAk).

Following analysis goes into detail of what happened with the ep values for
the different configurations of neighborhoods for cGAk. Figure 8 plots the ep
for all the problems, considering cGAk with k equal to 2, 4, 6, and 8. The first
conclusion here is that all cGAk variants present high values of ep for
OneMax problem at the beginning of the search, meaning that those k values
provides the cGAk variants with high exploration ability, declining gradually

876 C. SALTO AND E. ALBA



to the end the evolution. In the case of MaxCut, the algorithms present
a faster reduction in the ep values during the first stages of the search. After
that, the cGAk variants show a moderated ep progress, which means that the
search is trapped in local basins (ie. it is costly to improve current solutions).
It is important to note that, for this problem, the optimum is found very
quickly as indicated in Section 4.1. P-PEAKS presents a similar situation to
MaxCut but with low initial ep values. MTTP deserves a special considera-
tion: cGAks present a fluctuation in the ep values from the middle of the
search, which is more important at the end of the evolution. This indicates
that the variants have the ability to escape from local minimal.

Anyway, the curves representing the different k values are overlapped in
most of the evolution. Values of k ¼ 6� 2 present a slight higher ep values
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Figure 7. Escape probability versus iterations of cGAk and genGAk (k ¼ 6) for all the problems.
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than the case of k ¼ 2, indicating that the cGAk with k ¼ 6� 2 has higher
chances to escape from local optima than genGA2. These results validate the
ones obtained in Section 4.1: cGA2 needs more evaluations to obtain the
optimum value than the rest of cGAk‘s.

In summary, we can detect some trends in the ep of the structured cGA
cases, but still, their behavior is too similar each other in most problems: we
probably should need a better metric to understand their internal differences.

Conclusions and Future Work

This article analyzes the benefits of incorporating the neighborhood con-
cept to an EA, and how that notion affects to their success. For that
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Figure 8. Escape probability versus iterations of different cGAk‘s to solve the problems.
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purpose, we considered cellular GAs (structured neighborhood), GAs
incorporating the concept of neighborhood (non-structured neighbor-
hood) and traditional panmictic GAs. Also, the influence of the number
of neighbors in the performance of the algorithms were analyzed with the
aim of generalizing the study to a wider spectrum of algorithms. A series
of experiments and comparisons have been carried with several different
combinatorial problems using metrics, such as fitness evaluations, and
different evolvability measures.

In short, as to accuracy, the cGAk algorithms solved instances better than
non-structured ones, specially those with k=6. As to the computational effort
(number of evaluations), cGAk performs a search in a faster way than the
genGAk, and those differences are statistically significant for all the tackled
problems. Consequently, the high exploration/exploitation capabilities of
cGAk are clear, and that advantage may be attributed to the neighbor notion
and their conformation.

Using a kind of probability of escape analysis, we have shown that solu-
tions evolved by an EA using structured neighborhoods such as cGAk shows
higher ep values than genGAk (EA using non-structured neighborhoods),
which indicates that cGAk has the ability to evolve solutions escaping from
local basins, a main hypothetical reason now visualized and confirmed on
their behavior.

As future work, we will experiment with other combinatorial problems to
extend the study presented in this work. This is important so as to better
understand patterns of search based in internal metrics related to the search
landscape. It is also clear that we need to add other metrics that better help to
differentiate the behaviors in the different neighborhoods: most probably
these metrics should account for such neighborhood peculiarities if we want
a deeper understanding.
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