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ABSTRACT
The transition to non-fossil fuels brings with its basic challenges 
in battery technologies. Due to their efficiency, one of the areas 
where Li-ion batteries are widely used is electric vehicles (EVs). 
Range estimation is one of the most important needs in 
a battery-powered electric vehicle (BEV). The range of BEVs 
directly depends on battery capacity and powertrain efficiency. 
Although the electrical performance of Li-ion batteries has sig-
nificantly improved, it is still not possible to overcome their 
capacity degradation with aging. State of charge (SoC) and 
state of health (SoH) are two important measures for a battery. 
With accurate SoC and SoH estimates, a battery management 
system can prevent each cell in the battery pack from over- 
charging or over-discharging, and prolongs the life of the entire 
pack. The novel idea in this study is to estimate SoH with the 
data collected during the battery charging process. The most 
needed moment for SoH is the end of the charging process. 
With this information, the user can plan the job that the battery 
will be used with. In order to meet this need, a specially 
designed deep neural network (stacked LSTM) is trained and 
tested using measurements only from constant current char-
ging phase of quick charge process. The test results show that 
this method is effectively applicable to quick chargers.

ARTICLE HISTORY 
Received 28 July 2020  
Revised 8 October 2020  
Accepted 5 March 2021  

Introduction

Technological enhancements in the last decade have brought electrical vehi-
cles (EVs) in our lives. EVs have brought many advantages for daily use and 
the environment compared to petrol cars (Energy sage 2020). Also, vision of 
electrified transportation has been adopted by many smart cities' plans 
(European Comission 2011; Galford 2020; Jakobsen 2014; Smart Dubai 
Office 2020; Smart Dublin 2020). As a result of these, EV market is expanding. 
For example, in 2019, 540,000 EVs were sold. Global production of EVs is 
expected to be 4 million in 2020. Also, in 2025, it is expected that the 
production of EVs will be 12 million annually (Kobie 2020). However, LG 
Chem reported that they could not keep up with the demand for electrical 
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batteries. Also, Mercedes-Benz has revisited EV goals for sales (The Verge 
2020). It is known that the battery is the heart of EVs. Automobile engines 
cannot start without a proper electric supply (Roy et al. 2015). These issues 
have created concerns about the efficiency and health of batteries. Simlett and 
Mortier mentioned that managing battery life cycle will play a key role in 
future EVs (O’kane 2020). Therefore, the health of battery or state of health 
(SoH) is an important topic in today and near future.

A study done by Zhao et al. (2017) proposes a battery remaining useful life 
prediction (RUL) method based on deep belief network (DBN) and relevance 
vector machine (RVM). Features extracted by DBN provide input for Non- 
volatile memory (NVM). The proposed method gives acceptable Li-ion RUL 
prediction but prediction accuracy needs to be improved. A study done by 
Dong et al. (2014) proposes support vector regression-particle filter (SVR-PF) 
on battery SoH monitoring and RUL prediction. With experiments, it is found 
that when the number of charge and discharge cycles increases, battery 
capacity decreases and battery impedance increases. These parameters are 
used for RUL estimation of battery with implemented SVR-PF algorithm. 
Although it is said that the SVR-PF algorithm has robust performance, RUL 
estimation threshold and end of life (EOL) threshold limit predictions in 
a narrow band (between 85% and 70% of nominal capacity). Thus, this method 
is not applicable for most of the cases. In Liu et al. (2013), battery SoH 
estimation approach has been presented on data-driven Gaussian process 
regression (GPR) algorithms. To improve the poor performance of the GPR 
algorithm, Gaussian process functional regression (GPFR) algorithm has been 
utilized. GPFR and GPR models are trained with a number of charge/dis-
charge cycles and available capacity at that cycle. Then, training hyper- 
parameters are optimized and tested. Lastly, predictions are converted to 
battery SoH estimation with a mathematical equation. Even though the pro-
posed method can predict a wider nominal capacity range, Li-ion battery 
degradation can vary in different conditions and can increase the error 
significantly. Another GPR-based SoH estimation method was proposed by 
Yang et al. (2017). The proposed method uses charging curve to estimate SoH 
of Li-ion batteries. In this study, four features are explained and extracted from 
charging curves. Firstly, in constant current mode, while cycle number 
increases the constant current time decreases. Secondly, constant voltage 
mode duration increases while cycle number increases. Thirdly, constant 
charging slope increases while cycle number increases. Finally, vertical slope 
at the corner of constant current increases while cycle number increases. 
Features are extracted through these curves and formed as input data set. 
GRA method is applied to analyze relational grade. Results show that, in 
training phase, the proposed model predictions are very accurate. But in 
testing phase, the proposed GPR model prediction error increases 
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significantly. It can be said that the model is not properly optimized or the 
model is overfitted.

In AI-based SoH predictions, Zhang et al. (2018b) proposed a SoH 
prediction method with long short-term memory (LSTM), which is 
a special type of RNN. The proposed method can predict the RUL of Li- 
ion battery with a low amount of data. Andre et al. (2013) compare two 
parameter estimation methods (extended Kalman filter and structured 
neural network) for SoH determination. For SoH determination, the mea-
sured values of State of Charge (SoC), temperature, and current. Test 
results show that compared to extended Kalman filter, structured neural 
network gives more stable results. In a study (Ren et al. 2018), DNN-based 
RUL prediction model is proposed for multi-battery RUL estimation. The 
model is tested with Li-ion battery data set. In Li et al. (2019), hybrid 
Elman-LSTM method is presented for Li-ion battery RUL prediction. 
According to battery capacity, cycle number, and discharge of battery, 
RUL of the battery is predicted with the hybrid Elman-LSTM method. 
A study done by Yang et al. (2017) proposes a simple method estimating 
battery’s SoH based on three-layer BPNN. Inputs of the NN model are 
ohmic resistance, polarization resistance, polarization capacity, and SoC. 
Output of the NN model provides the SoH estimation. The model is tested 
on LiFePo4 batteries. Bonfitto et al. (2019) presented the SoH estimation of 
technique-based ANN pattern recognition structure. Voltage, temperature, 
capacity, energy, and estimated SoC are given to the structure, and when 
similar patterns occur, the output of the ANN estimates SoH for lithium 
batteries.

Among further studies, in Tang et al. (2018) fast SoH estimation algorithm 
was proposed for Li-ion batteries. This method firstly measures the current 
and voltage trajectories of battery cells at certain times. The obtained measure-
ments fit in dQ/dV curve and proper filtering algorithms are applied. Next, the 
peak of the filtered curve calculates regional capacity at a specific time and SoH 
is estimated with regional capacity at a specific time divided by rated capacity 
taken from the specification sheet at 25°C. Test results give less than 2.5% 
estimation error. But the proposed approach is not optimal for high current 
rate, different temperatures, or shallow charge/discharge cycles. Furthermore, 
Yang et al. (2017) proposed a SoH estimation method for analyzing constant 
voltage charging current. In the constant voltage charging period, battery 
voltage and current are recorded. Preliminary analysis and curve fitting of 
the recorded data set is considered as robust characteristic parameter, which is 
related to capacity fading. Lastly, battery SoH can be derived using the 
correlation with obtained parameters. The developed method proposed good 
results but only for LiFePo4 batteries at constant environment conditions. Ma, 
Yang, and Wang (2019) proposed a data-model fusion battery SoH estimation 
approach. The open circuit voltage (OCV) model is presented, and 
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incremental capacity analysis and differential voltage analysis method are 
combined. The SoH estimation model is developed based on the correlation 
between variations of OCV model parameters. It is mentioned that work could 
be improved with temperature dependency.

For both SoC and SoH prediction, in a study Chaoui and Ibe Ekeocha 
(2017) propose a SoC and SoH estimation technique, which is tested on 
online electric vehicle LiFePO4 and LTO batteries. Dynamically driven 
recurrent networks are designed for both SoC and SoH estimation. The 
given technique uses the battery’s voltage, charge/discharge currents, and 
ambient temperature variations to estimate SoC and SoH of the battery 
simultaneously. In an article done by Talha, Asghar, and Kim (2019), they 
propose ANN-based online SoC and SoH estimation technique for lead-acid 
batteries. Voltage and current are used in single-layer neural network for 
SoC and SoH estimation. The proposed simple mathematical calculations 
give an opportunity to real-time estimation.

By the nature of batteries’ inner structure, battery capacity degrades with 
every charge–discharge cycle. This battery health capacity decrease has a non- 
linear character that cannot be modeled with the traditional method (Zhang, 
Hou, and Zhang 2020). In recent years, ANN have become popular in battery 
SOH prediction with the ability to deal with nonlinearities in systems. In this 
respect, LSTM, which has been widely adopted in research areas like audio 
video and text processing, has a high potential in accurate SOH prediction. 
LSTM is a time-dependent structure and generally used for learning long-term 
dependencies. Beyond the traditional RNN models, LSTM provides a judge 
mechanism to judge if the information is useful or not (Yu et al. 2019). When 
data enter the LSTM cell, it is judged with learned rules and mismatched 
information is forgotten. Moreover, LSTM structure can simplify AI compu-
tational tasks and increase network efficiency at cell level (Bak and Lee 2019; 
Chen et al. 2018; Zhang et al. 2017). Compared to standard RNN methods, the 
LSTM network can maintain information in memory for long periods of time. 
This also provides advantage in long- and short-range dependencies 
(Sherstinsky 2020). In battery management systems, battery degradation 
data that cover hundreds of battery cycles can be the source for accurate 
LSTM-based estimation. In this case, utilizing LSTM structure in battery 
health estimation will provide highly accurate results.

In this study, the novel ideas are to estimate the SoH of the battery with the 
data collected in the period of constant current part of the quick charging 
process, and secondly the proposed deep neural network that consists of 
a stacked LSTM-BiLSTM structure. The moment that the SoH information 
is most needed is the end of the charge process. With this knowledge, a user 
can plan the work where the battery will be used. In order to do that, a specially 
designed deep neural network is trained and tested with the data of charging. 
The remaining of the paper is organized as follows: preliminaries and 
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definitions for technologies and data set used are given in the following 
section. The proposed method is given in Section 3. Section 4 presents the 
tests undertaken and a discussion of their findings. Finally, conclusions and 
future works are given in the last section.

Preliminaries and Definitions

Today, lots of electronic/electromechanical devices run with batteries, there-
fore battery technology is one of the crucial technologies in this century. 
Batteries depending on their type have different properties in terms of advan-
tages and disadvantages. However, all of them are affected from health degra-
dation. SoH is a measure of current capacity of the battery with respect to its 
fabricated capacity and end of life (EOL) capacity. Through the usage, the 
capacity falls from fabricated capacity to EOL capacity with time. The capacity 
estimation of a used battery gives valuable information for the planning of 
maintenance and rest of the work done. The straightforward way of estimation 
of battery capacity is based on discharge data. In the discharge process, energy 
accumulated on the battery is drained through a load. The capacity can be 
calculated by integrating the energy flown out of the battery. Impedance 
measurement is another way of capacity estimation. For this measurement, 
special expensive measurement equipment must be used through the charge 
process. This equipment must be integrated to the inside of the battery. For 
small batteries and some special types, this method may not be applicable.

There are different charging methods for Li-ion batteries. The two most 
known are constant voltage and constant current methods. In the constant 
voltage method, constant voltage is applied to charge the battery. The current 
drawn by the battery falls and approaches a constant value, therefore the 
charging rate falls with time. In the constant current method, constant current 
is fed to the battery. The voltage of the battery rises with time. This method has 
a high and constant charging rate but it includes the danger of explosion of the 
battery. The hybrid method, known as quick charge, is the combination of 
these two methods. Firstly, constant current is applied until the battery voltage 
rises to a specified voltage. Secondly, constant voltage is applied until the 
current falls to a specified value. At the end, a constant standby voltage is 
applied to keep the battery charged. Quick charge procedure as shown in 
Figure 1 is commonly used, especially with Li-Ion batteries, for its time-saving 
property.

Recurrent neural network is a special model that is suitable for sequential 
information. In a traditional neural network, it is assumed that all inputs (and 
outputs) are independent of each other. RNNs have a memory unit to capture 
past information; therefore, they are called recurrent (Zhang et al. 2018a). 
Thus, they perform well in processing sequences or time series. 
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ht ¼ tanh whhht� 1 þ wxhxtð Þ (1) 

yt ¼Whyht (2) 

Figure 2 shows an RNN unit unfolded for three steps where ht is the hidden 
state of RNN at time t and Whh, Wxh, Why are the weight matrices used for 
from h to h, from x to h, and from h to y, respectively.

LSTM is a popular variation of RNN. LSTM has the capability to utilize 
historical data. LSTM networks have the ability of holding long-term connec-
tions within these data. LSTM solves the vanishing gradient problem that 

Figure 1. The constant current, constant voltage charge profile for a Li-ion battery.

Figure 2. Unfolded architecture of an RNN unit.
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RNN suffers from. LSTM is an ideal tool for classification and estimating time 
series in a way that is independent of the time period.

In Figure 3, the inside of an LSTM unit is shown with 

f t ¼ σðWf � ht� 1; xt½ � þ bfÞ (3) 

it ¼ σðWi � ht� 1; xt½ � þ biÞ (4) 

~Ct ¼ tanhðWc � ht� 1; xt½ � þ bcÞ (5) 

Ct ¼ f t�Ct� 1 þ it�~Ct (6) 

ot ¼ σ w0 ht� 1; xt½ � þ b0ð Þ (7) 

ht ¼ ot�tanh ctð Þ (8) 

where Wf, Wi, Wo, and Wc are the weight matrices connecting concatenation 
of the previous cell output state with hidden layer input to the three gates and 
the input cell state. The bf, bi, bc, and bo are four bias vectors. The σ is the gate 
activation function, which normally is a sigmoid function, and the tanh is the 
hyperbolic tangent function.

Figure 3. Inside schematic of an LSTM unit.
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An LSTM unit has a forget gate, input gate, and output gate as shown in 
Figure 4. The unrolled structure of an LSTM unit is given in Figure 5.

A bidirectional LSTM (BiLSTM) unit is composed of a pair of LSTM units. 
In training BiLSTMs, data are fed once from the beginning to end and then 
from end to the beginning. It usually learns faster than the one-directional 
approach, although this property depends on the task. The difference between 
LSTM and BiLSTM is that BiLSTM works in two directions: one moves 
onward with past data and the other moves backward with future data as 
shown in Figure 6. The output of the BiLSTM hidden unit is given in 
Equation (9). 

Figure 4. Gates in an LSTM unit.

Figure 5. Unfolded architecture of an LSTM unit.
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yt ¼ σ hb;t; hf ;t
� �

(9) 

Data set used (Saha and Goebel 2007) in this study is from the NASA 
repository. Battery no: B0005 data from Battery Data Set 1 is used. In this 
data set, a Li-ion battery was run through three different operational profiles 
(charge, discharge, and impedance) at room temperature. Charging was car-
ried out in a constant current (CC) mode at 1.5 A until the battery voltage 
reached 4.2 V and then continued in a constant voltage (CV) mode until the 
charge current dropped to 20 mA.

Repeated charge and discharge cycles result in accelerated aging of the 
batteries. The experiments were stopped when the batteries passed EOL 
criteria, which was a 30% fade in rated capacity. There are 169 cycles each of 
which contains charge, discharge, or impedance operations. We use only 
charge operations data and only rated capacity information from discharge 
operations. Explanations of data used are given below:

Voltage measured: battery terminal voltage (V)
Current measured: battery output current (A)
Temperature measured: battery temperature (°C)
Current charge: current measured at charger (A)
Voltage charge: voltage measured at charger (V)
Time: time vector for the cycle (s)
Capacity: battery capacity (Ah) for discharge till 2.7 V
In this study, Dell Precision Tower with 3.80 GHz Intel Xeon CPU E3-1270 

v6 CPU, 16 GB ECC RAM, 5 GB NVIDIA Quadro P2000 is used as the 
hardware platform. Besides, Python libraries like PyTorch, NumPy, SciPy, 
and Matplotlib are used for designing and testing the proposed stacked 
LSTM deep neural network.

Figure 6. Unfolded architecture of an BiLSTM unit.
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Proposed Method

In this study, the novel idea is to estimate the SoH of the battery with the data 
collected during the charging process. The moment that the SoH information 
is most needed is the end of a charging process. With this knowledge, a user 
can plan the work where the battery will be used. In order to do that, a specially 
designed deep neural network is trained and tested with the data, which are 
measured during charging.

For the data needed, we use NASA battery database. In the database, there 
are 169 charge–discharge cycles. At the end of each discharge, the calculated 
capacity of the battery is also given. This capacity must be fueled at the 
previous charging. This means that, at the end of each charging process, the 
capacity of the battery is known. The battery B0005 used has the max capacity 
of 1.8518 Ah in the data set. Considering this value, 30% faded capacity is 
1.2979 Ah, which was accepted as EOL capacity. Seven cycles that are under 
this capacity were excluded and 162 charge–discharge cycles were used in this 
study

For each charging process, there are five measurements with time stamp. 
These are;

● Voltage measured
● Current measured
● Temperature measured
● Current charge
● Voltage charge

Each charging process is a quick charge so it contains three parts: CC, CV, 
and standby. Standby part is not relevant to charging; therefore, it is removed. 
Removing the standby part is done automatically by a script that observes the 
charger current to fall to a specified value. The CC part is the main charging 
section since generally in less than 25% charging time more than 60% of the 
capacity is charged here. Therefore, in this study data that only belong to the 
CC part is used.

The number of time samples (length of the sequence) in each charge process 
is different. The charge cycles are divided randomly as 70% for training, 20% 
for testing, and 10% for validation. Therefore, we have 114 cycles for train, 31 
cycles for test, and 17 cycles for validation.

Since the length of the sequence is varying, a neural network structure which 
is independent from the length of the sequence is needed. The designed net-
work structure has four layers. The five measurements of the CC charging are 
formed as a feature vector input shown in Figure 7 as X. Due to the time-series 
performance of LSTM and BiLSTM, they are used in a cascaded form. In the 
data set, the average length of sequences is 812, with a standard deviation of 
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237. In order to capture different patterns and correlations, the number of 
hidden units of LSTM and BiLSTM layers is selected as 100. The LSTM layer is 
set to sequence output so each hidden unit of this layer has an output for every 
input. BiLSTM layer is set to the last output. It means that each hidden unit of 
this layer produces only one output after all inputs are completed. The last layer 
is a fully connected layer that combines all outputs from hidden units of 
BiLSTM layer into a single value, which is the SoH of the battery.

Training of deep learning models has its own difficulties. Adam optimizer 
(adaptive moment estimation) is a well-established optimization algorithm 
based on the RMSProp method, which stems from the stochastic gradient 
descent method. In our experiments, PyTorch library’s implementation of 
Adam optimizer is utilized. The optimization algorithm is run at every updat-
ing step after taking a batch size of samples from the training set. The new 
weights are calculated by the optimization algorithm according to the gradi-
ents. Some of the problems encountered in the training step are gradients 

Figure 7. Proposed stacked LSTM structure.
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exploding and diminishing, oscillations of training, and instability of the 
overall process. Adam optimizer has been observed to overcome these issues 
(Kingma and Ba 2014). Therefore, Adam optimizer is selected for these 
benefits. Besides, considering the average length of sequences, the minibatch 
size is selected as 10.

Test and Results

The total number of all charging sequences used is 162. The data set is 
randomly divided into three subsets: training (70%), validation (10%), and 
testing (20%). During the experiments, the mean training durations were 
measured as 25 minutes, while testing a single sample (inference) takes place 
under 5 seconds. The statistical information about the sequences belonging to 
each one of the subsets is given in Table 1.

The training process was conducted for 50 epochs by utilizing a learning 
rate scheduling. The initial learning rate of 0.01 was dropped with a factor of 
0.2 after seven epochs. In order to quantitatively assess the performance of the 
proposed approach, root mean square error (RMSE) for both training and 
test data sets is calculated as 

RMSE ¼
p

1=Nð Þ
X ŷi� yið Þ

2� �

where ŷ_iy ̂ i is the estimated SoH value of the ith sequence inferred from the 
network output given the sequence as an input, and y_i is the corresponding 
ground-truth value taken from the following discharge cycle. N denotes the 
total number of sequences within the data set. According to this, SoH RMSE 
values are given in Table 2 for the training and test data sets.

In Figure 8, the predicted and real SoH values and the prediction error for 
each sequence in the test data set are shown.

In order to investigate any potential overfitting issues, the log loss value 
after each epoch for both the training and the validation data sets is plotted in 
Figure 9. As the validation line follows the training line, it can be asserted that 
no overfitting occurred during the training process.

While a test is conducted for any given sequence by predicting the output 
from the whole length of the sequence, one might wonder the effect of 

Table 1. Statistical information about the sequences that were randomly selected for each one of 
the three subsets.

Data set
Number of 
sequences

Maximum 
sequence length

Minimum 
sequence length

Mean of 
sequence lengths

Standard deviation of 
sequence lengths

Training 114 1272 497 822.07 233.46
Validation 17 1182 497 837.65 233.43
Test 31 1289 479 813.42 249.51
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taking the first N number of data of a sequence. Such an investigation for 
the test data set was carried out, and the average RMSE results are plotted 
against the number of sequences taken as input in Figure 10. As the 
N increases, the average error rate decreases. This is an expected behavior 
since more information about a charging process is being fed into the 
trained network.

In Figure 11, the SoH values for each cycle in all of the three subsets are 
plotted together. As seen in the figure, real values have also irregulates, which 
creates difficulties in training.

In another representation, prediction results can be plotted as cycle number 
versus capacity estimation, as shown in Figure 12. In this representation, real 
capacity values in Ampere-hours rather than SoH percentage in all subsets 
show that the training process is successful and no overfitting issues have 

Table 2. Root mean 
square errors for the train-
ing and test data sets 
after the network is 
trained.

Data set RMSE

Training 2.9022
Validation 5.4212
Test 5.5010

Figure 8. Error for each test sequence.
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Figure 9. Training loss vs. validation loss (logarithmic).

Figure 10. RMSE of the test data set for a given first N samples.
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Figure 11. Training, test, and validation result.

Figure 12. Prediction results (capacity vs. cycles).
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occurred. Secondly, prediction of samples in test and validation subsets is 
satisfactory except only two outlier points located in the early beginnings of 
charge and discharge cycles.

In Table 3, the studies with Li-ion batteries similar to our study referred 
to in Section 1 are listed. In the proposed method, SoH RMSE for the test set 
is found as 5.501, which indicates a good performance among the listed 
studies.

Conclusion and Future Works

In this study, a novel method for predicting SoH of Li-ion batteries based on 
stacked BiLSTM deep neural network and usage of only constant current 
charging data are proposed. The constant current part of the quick charge is 
the first and the most used section in charging Li-ion batteries. This method 
gives the SoH value of the battery by utilizing only measurements of constant 
current charging parameters, i.e. charging current, charging voltage, mea-
sured current, measured voltage, and measured temperature. It means that 
after constant current charging begins this method can predict the SoH and 
the prediction error will decrease down to 5.5% (RMSE) with more data is 
measured and included. The RMSE of capacity in terms of Ampere-hours is 
found as 0.033. Therefore, it can be used in charging operations in order to 
predict SoH very effectively within an acceptable error rate with any quick 
charger for Li-ion batteries after training the proposed deep neural network 
model.

The proposed stacked BiLSTM model structure is found to be successful in 
predicting SoH of batteries because of its bidirectional nature, where the 
training process includes combining onward and backward data of the mea-
surements, therefore enabling a more robust training phase, after which any 
new sample’s output is predicted more reliably than other recurrent networks 
or unidirectional LSTM models.

Our future works include working on any other Li-ion data sets available in 
order to prove the effectiveness of the proposed model and optimizing it. 
Augmentation of the method to decrease the prediction error, especially for 
restricted input data, which is the case for short charging times, is also another 
important work ahead.
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