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ABSTRACT 
 

The characteristic functions (CHFs) are derived for GP3 (generalized Pareto) distribution 
for shape parameters ξ ≠ 0 and ξ = 0 in explicit closed forms. The CHF of 3-parameter 
Weibull (type-3extreme value distribution (EVD)) is also derived in a closed form by a 
direct methodology. Moment-generating functions (MGFs) of the distributions are also 
derived and parametric relations of certain basic properties of the distributions are also 
obtained. Model estimation by the method of L-moments is also provided. 
 

 
Keywords: Characteristic function; moment generating function; GP3 distribution; 3- 

parameter Weibull distribution. 
 
1. INTRODUCTION 
 
Frequencies of extreme event estimations are of particular importance and EVDs play a 
significant role. The type-3 EVD (3-parameter Weibull) is a competing model for the purpose 
due to its wide applicability. The GP3 is also effectively used along with extreme value 
distributions by many researchers for extreme event estimations [1-9]. In hydrology the GP3 
is applied to estimate extreme events such as annual maximum rainfall and river discharges 
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[10-12]. The threshold estimation in extreme value applications can be well approximated by 
an extreme value model such as the GP3 [13]. A set of algorithms for numerical simulation 
(synthetic data) of generalised Pareto distribution is provided in [14]. 
 
But the CHF, which is one of the most important properties of a probability distribution, of 
GP3 and its properties are not available in statistics literature. CHF has many useful and 
important properties which give it a central role in statistical theory. It has great theoretical 
importance and also yields many valuable results in the theory of sampling [15]. It is also 
known to be the Inverse Fourier Transforms of the probability density function. Thus it 
provides an alternative route to analytical results instead of dealing directly with probability 
distributions. In conjunction with the Fast Fourier Transform (FFT), the CHF is a first choice 
for computation of statistical functions [16,17]. This is of significance if only done using the 
FFT. Goodness-of-fit statistics encountered in the data analysis can be performed with the 
FFT approximation of a distribution with known CHF [17]. The discrete Fourier Transform 
(DFT) approximation of probability density functions with known CHFs is especially useful 
when analytical expression for the density functions are not available [18]. For numerical 
approximation of distribution functions, a DFT approximation in terms of CHF is applied 
[18,19]. CHFs always exist for all probability density functions unlike the MGFs. The CHF of 
the GP3 is derived for its shape parameters � ≠ 0 and � = 0 for the first time. It qualified the 
tests for a function to be a CHF [15,20]. The MGF of the GP3 is also derived and parametric 
relations for certain basic properties of a distribution such as raw moments, mean, variance, 
skewness and kurtosis are also obtained.  
 
CHF of location families suggest that: 
 ����	
� = ��	�
����	
�; � = √−1, � − ����
�����
ℎ����������
� ��!�
��"��
�������	�  (1) 
 ��	
� − #$%��
ℎ����������
� ��!�
��"��
�����	� (2) 
 
CHF [��	
�] of 2 parameter Weibull distribution is already derived by Muraleedharan et al. 
[21,22]. Hence from (1), the CHF [����	
�] of 3-parameter Weibull distribution (type-3 EVD) 
can be easily obtained. 
 
But here, the CHF of type-3 EVD is also derived independently by the simple and lucid 
methodology adopted for the derivation of CHF of GP3. The MGF of type-3 EVD is also 
derived and thereby parametric relations are also obtained to estimate the basic properties 
of the distribution. When location parameter tends to zero, the CHF of 3-parameter Weibull 
model tends to the CHF of 2-parameter Weibull distribution given by Muraleedharan et al. 
[21,22]. 
 
The model estimation by the method of L-moments or linear combination of probability 
weighted moments (PWMs) by Hosking and Wallis [6] is also provided. 
 
The derivations are given in sections 2.1-2.4. The population and sample L-moment 
estimations are discussed in Sections 3.1 and 3.2. The model estimations of GP3 and type-3 
EVD are given in sections 3.3 and 3.4. Sections 4 and 5 deal with discussion and 
conclusion. 
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2. MATHEMATICAL DERIVATIONS OF CHF AND MGF OF GP3 AND TYPE-3     
EVD 

 
2.1 CHF of GP3  
 
The probability density function of generalized Pareto distribution (GP3) is given as  
 ��	�  = '( )1 + � +,��( -.�/0�'   for ξ ≠ 0                                                          (3) 

 ��	�  = '( �� )− +,��( -.   for ξ = 0                                                              (4) 

 � isthe locationparameter, 2 is the scaleparameter and � is the shape parameter respectively 
 
x ≥ µ for ξ ≥ 0, and � ≤  ≤ � − (4 for ξ< 0 

 
The cumulative distribution functions of GP3 are: 
 

%�	� = 51 − )1 + � +,��( -.�/0 ���� ≠ 01 − �� )− +,��( -. ���� = 0 6                                                                        (5) 

 
The CHF of GP3 is initially derived for ξ ≠ 0 and then for ξ = 0.   
 
The CHF ��	
� of GP3 (ξ> 0) is given as 
 ��	
� = 78��	�
9�] = : ��!	
���	�  + � : !��	
���	�∞�∞�                                (6) 

 
Where X-random variable, t-any arbitrary real constant and � = √−1 
 : ��	�
���	� ∞� = : 8��!	
� + �!��	
�] '(∞� )1 + � +,��( -.�/0�'    (7) 

 

 = ; ��!	
� 12 )1 + � + − �2 -.�/0�'   + � ; !��	
� 12
∞

�
∞

� )1 + � + − �2 -.�/0�'   

 
 
Integrating first term of (7) by parts ⇒ 
 : ��!	
� '( )1 + � +,��( -.�/0�'   = ��!	
�� − 
 : !��	
� )1 + � +,��( -.�/0  ∞�∞�  (8) 
 
Now integrating second term of (7) by parts ⇒ 
 � : !��	
� '( )1 + � +,��( -.�/0�'   = �!��	
�� + �
 : ��! 	
� )1 + � +,��( -.�/0  ∞�∞�    (9) 
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(8)+ (9)⇒ : ��	�
9���	�  =∞� ��	�
�� + �
 =: ��	�
� )1 + � +,��( -.�/0  ∞� > (10) 

After expanding ��	�
�andmultiplying with )1 + � +,��( -.�/0 and integrating each product 

after substituting)1 + � +,��( -.�/0 = � gives the CHF of GP3 distribution as: 

 ��	
� = ��	�
�� ∑ @ 	AB(�C∏ 	'�E4�CFGH I∞JKL , j=0, 1, 2,…  (11)    

 
Expression 11 is also the characteristic function of GP3 distribution for ξ < 0.  
 
The expansion of ��	
�using Taylor’s seriesis: 
 ��	
� = +1 + AB�'! − BN�NO! − ⋯ - +1 + AB(	'�4� − BN(N	'�4�	'�O4� − ⋯ -  (12) 

 
The CHF of GP3 distribution for ξ = 0 is derived as: 
 ��	
� = 78��	�
9�] = : ��	�
� '( �� )− +,��( -.∞�     (13) 

            = '( : 8��!	
� + �!��	
�]�� )− +,��( -.  ∞�  (14) 

   = ��	�
�� + �
 Q: ��	�
��� )− +,��( -.  ∞� R (15) 

 

After expanding ��	�
� and multiplying each term by �� )− +,��( -., integrate each product 

by substituting �� )− +,��( -. = �. Then the summation of the integrals leads to the 

characteristic function of GP3 distribution for ξ = 0 as: 
 ��	
� = ��	�
�� ∑ 	�
2�J∞JKL  (16) 
 
It can also be deduced as the limit, ξ →0, of the CHF of the GP3 distribution for ξ≠ 0. 
 
2.2 CHF of Type-3 EVD 
 
Nadarajah and Pogány [23] obtained indirectly the CHF of type-3 EVD by a cumbersome 
procedure that uses the integral referred to as the complex parameter Kratzel function.  
Muraleedharan [24] also derived the CHF of type-3 EVD, but the methodology and the 
expression are obscure. In this work, the CHF of the 3-parameter Weibull distribution is 
derived by the direct and lucid methodology discussed in the previous sections. The 
probability density function of type-3 EVD is given as: 
 ��	�  = 4(0 	 − ��4�'�� S− +,��( -4T  ; −∞ < � < ∞; 2, � > 0 (17) 

 
Where µ, σ and ξ are location, scale and shape parameters respectively. The cumulative 
distribution function is given by 
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%�	� = 1 − �� S− +,��( -4T (18) 

 
 The CHF is derived as 
 ��	
� = 78��	�
9�] = : ��	�
���	�∞�   (19) 

   = : ��!	
�∞� ��	�  + � : !��	
�∞� ��	�   (20) 

         = ��	�
�� + �
 : ��	�
��� S− +,��( -4T∞�   (21) 

 
Adding the integrals of the products obtained by multiplying each term of ��	�
� with �� S− +,��( -4T and substituting +,��( -4 = � in the integrals of the products leads to the CHF 

of type-3 EVD as: 
 ��	
� = ��	�
�� + ��	�
�� )�
2Γ +1 + '4- + 	AB(�NO! Γ +1 + O4- + 	AB(�WX! Γ +1 + X4- + ⋯ .     

(22) 
Or ��	
� = ��	�
�� ∑ 	AB(�YZ! Γ +1 + Z4-∞ZKL , r = 0,1, 2,...         (23) 

 
When � → 0 
 ��	
� = ∑ 	AB(�YZ! Γ +1 + Z4-∞ZKL  (24) 

 
Ie. If location parameter is zero, then the CHF of type-3 EVD (23) tends to the CHFof 2-
parameter Weibull distribution (24) given by Muraleedharan et.al [21, 22]. 
 
Revisiting (1): 
 ����	
� = ��	�
����	
�⇒thattheCHFoftype-3 EVD follows from 2-parameter Weibull, ie. 
(23) follows from (24), which has been first derived in [21,22]. 
 
2.3 MGF of GP3 
 
The MGF, \�	]� of GP3 distribution (ξ> 0) is derived as 
 \�	]� = 78��	]9�] = : ��	]� '( )1 + � 	,���( .^/0 �'∞�   (25) 

 
Where θ – arbitrary real constant 
 
Adding the integral of each product obtained by multiplying each term of ��	]� with '( )1 + � 	,���( .^/0 �'

 and substituting )1 + � 	,���( .^/0  =y in the integrals of the products leads to 

the MGF of GP3 as 
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\�	]� = ��	]�� ∑ @ 	_(�C∏ 	'�E4�CFGH I∞JKL  (26) 

 
Expression (26) is also the MGF of GP3 for ξ< 0.       
 
The raw moments of the GP3 distribution can be obtained from \�	]�.Ie. 
 
The raw moments of the GP3 distribution (ξ>0) can be obtained from \�	]�. Ie. The GP3 
random variable has raw moments up to nth order if � < '̀

. 

Then 
 7	9`� =  �`´ =  \�	`�	0�;  � < '̀

   (27) �`´ −nth raw moment 
 
and the MGF of GP3 (ξ = 0) can also be obtained by the same method as 
 \�	]� = ��	]�� ∑ 	]2�J∞JKL  (28) 
 
2.4 MGF of Type-3 EVD 
 
Muraleedharan [24] obtained the MGF of 3-parameter Weibull distribution by deducing from 
its CHF which is also a complex expression. Here the MGF of type-3 EVD is derived by a 
direct methodology as: 
 \�	]� = 78��	]9�] = : ��	]�∞� 4(0 	 − ��4�'�� S− +,��( -4T   (29) 

 
Adding the integral of each product obtained by multiply each term of ��	]�  with 4(0 	 − ��4�'�� S− +,��( -4T and substituting +,��( -4 = � in the integrals of the products leads 

to the MGF of Type-3 EVD as 
 \�	]� = ��	]�� ∑ 	_(�YZ!∞ZKL Γ +1 + Z4- (30) 

 
When �	����
�������a�
��� → 0, 
 \�	]� = ∑ 	_(�YZ!∞ZKL Γ +1 + Z4- (31) 

 
Expression 31 is the MGF of 2-parameter Weibull distribution. 
 
3. ESTIMATION BY THE METHOD OF L-MOMENTS 
 
3.1 Estimation of L-moments of probability distributions 
 
L-moments or linear combination of probability weighted moments (PWMs) are a recent 
development in statistics and they form the basis of an elegant mathematical theory and 
facilitate the estimation process. L-moment methods are superior to MLE, method of 
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moments etc. L-moments are more robust to the presence of outliers in the data. L-moments 
are less subjected to bias in estimation [6]. 
 
Analogous to the method of moments, the method of L-moments obtains parameter 
estimates by equating the first n sample L-moments to the population quantities. Hosking et 
al. [25] and Hosking and Wallis [5] found that with small and moderate samples, the method 
of L-moments is often more efficient than maximum likelihood (MLE). The method of L-
moments yields efficient and computationally convenient estimates of parameters and 
quantiles.  
 
If Q (p) is the quantile function of %�	�, then probability weighted moments αr are provided 
by 
 bZ = : c	��	1 − ��Z �'L     (32) 
 
Then the L-moments are defined [6] by 
 dZe' = 	−1�Z ∑ fZ,E∗ZEKL bE                          (33) 
 
Where 
 fZ,E∗ = 	�'�Y^F	ZeE�!	E!�N	Z�E�!  (34) 

 
Accordingly the first 4 L-moments are given by 
 d' = bL (35) 

 dO = bL − 2b' (36) 
 dX = bL − 6b' + 6bO (37) 
 dj = bL − 12b' + 30bO − 20bX (38) 

 
The population L-moment measure of location (mean), and L-moment ratio measures of 
scale (L-CV (l��, skewness 	lX� and kurtosis 	lj� are: 
 

Mean = d' (39) 
 

Scale = l = mNm/       (40) 

 

L-skewness = lX = mWmN      (41) 

L-kurtosis = lj = mnmN       (42) 

 
Or in general 
 lZ = mYmN , � = 3,4, …        (43) 
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L-moment ratios measure the shape of a distribution independently of its scale of 
measurement. 
 
3.2 Estimation of Sample L-moments 
 
Let x1,n≤ x2,n ≤ …≤ xn,n be the sample in ascending order. Then 
 �Z = ��' ∑ 	`�J�	`�J�'�…	`�J�Ze'�	`�'�	`�O�…	`�Z� J,`J̀K'  (44) 

Ie. 
 �L = ��' ∑ J,`J̀K'  (45) 

 �' = ��' ∑ 	`�J�	`�'�`�'JK' J,` (46) 

 �O = ��' ∑ 	`�J�	`�J�'�	`�'�	`�O�`�OJK' J,` (47) 

 
and 
 �Ze' = 	−1�Z ∑ fZ,E∗ �EZEKL  (48) 
 
Ie. 

 �' = �L (49) 
 �O = �L − 2�' (50) 
 �X = �L − 6�' + 6�O  (51) 
 �j = �L − 12�' + 30�O − 20�X (52) 

 
ar and lr are unbiased estimators of αr and λr 

 

The sample L-moment ratios are given by 
 

Mean= l1  (53) 
 

L-CV = t = 
qNq/ (54) 

 
L-skewness = 
X = qWqN (55) 

 
L-kurtosis = 
j = qnqN (56) 

 
Or in general 
 
Z = qYqN , � = 3,4, … (57) 
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3.3 Estimation of Parameters of GP3 
 
To estimate the model parameters by the method of L-moments, the corresponding model 
and sample L-moment ratios are equated and solved for the unknown parameters. Usually 
the first 3 L-moments (d', dO , lX) will be sufficient to estimate a model with 3 parameters. The 
first 4 L-moments of GP3 are given [6] as: 
 d' = � + (	'�4� (58) 

 dO = (	'�4�	O�4� (59) 

 lX = 	'e4�	X�4� (60) 
 lj = 	'e4�	Oe4�	X�4�	j�4� (61) 

 
3.4 Estimation of Parameters of Type-3 EVD 
 
The first 4 L-moments of Weibull distribution are derived for estimation of the parameters. 
They are: 
 d' = � + 2Γ +1 + '4- (62) 

 dO = 2Γ +1 + '4- r1 − 2�/0s (63) 
 

lX = t'�X×O^/0eO×X^/0v
t'�O^/0v  (64) 

 

lj = t'�w×O^/0e'L×X^/0�x×j^/0v
t'�O^/0v    (65) 

 
After equating the corresponding population L-moments with the sample L-moments, the 
parameters can be estimated numerically. 
 
4. RESULTS AND DISCUSSION 
 
The GP3 and type-3 EVD are widely used in extreme event estimations. But the CHF of GP3 
(for shape parameters � ≠ 0 and � = 0) distribution, which is one of the most important 
property of a probability distribution, is not available in literature. Hence the CHFs of GP3 are 
derived in explicit closed forms for the first time. The CHF of GP3 for ξ< 0 has the same 
functional form of the CHF of GP3 for ξ> 0.  
 
The MGF of the distributions are also derived to obtain parametric relations for certain basic 
properties of the distributions such as raw moments, mean, variance, skewness and kurtosis 
(Tables 1 and 2). The constant skewness and kurtosis of the GP3 (ξ=0) are 2.0 and 9.0 
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respectively. Ie. It has a positive skewness and excess kurtosis 6. Also the skewness and 
kurtosis are respectively equal to that of the exponential distribution. 
 
The CHF of type-3 EVD is also derived by the methodology that is direct and lucid. When  
µ (location parameter) = 0, the CHF of type-3 EVD tends to the CHF of 2-parameter Weibull 
distribution. All the 3 CHFs derived here qualified the tests for a function to be a CHF 
[15,20]. For example the CHF of GP3 satisfied the tests such as:  
 

• that ��	
� must be continuous in t 
 

 ��	
� of GP3 is clearly continuous in t 
 

• that ��	
� is defined in every finite t- interval 
 ��	
� of GP3 is defined in every finite t-interval. 

 
• that ��	0� = 1 

 ��	
� = ��	�
�� ∑ @ 	AB(�C∏ 	'�E4�CFGH I∞JKL = ��	�
�� × )1 + AB(	'�4� + 	AB(�N	'�4�	'�O4� + ⋯ .          (66) 

 ∴ ��	0� = 1 
 
And hence the condition is satisfied. 
 

• that ��	
� and ��	−
� shall be conjugate quantities 
 ��	
� = ��	�
�� × )1 + AB(	'�4� + 	AB(�N	'�4�	'�O4� + ⋯ .                                                      (67) 

 ��	−
� = ��8−	�
��] × )1 − AB(	'�4� + 	AB(�N	'�4�	'�O4� − ⋯ .                                              (68) 

 ∴ ��	
�and��	−
� are conjugate quantities. 
 

• that |��	
�| ≤ :|��	�
9�| %�	� ≤ 1 = ��	0� 
 

For any random variable X with finite mean ̅, the CHF, by Taylor´s theorem can be written 
as: 
 ��	
� = 1 + �
̅ + �	
�, 
 → 0                                                                                    (69)    

 
Hence CHF of GP3 can be written as: 
 ��	
� = 1 + �
 +� + (	'�4�- , 
 → 0                                                                               (70) 

 ∴ |��	
�| = |r1 + 
O )� + (	'�4�.Os = 1 = ��	0�                                                                        	71) 
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Table 1. The first 4 raw moments of GP3, type-3 EVD and 2- parameter Weibull  
distributions 

 
GP3 (ξ> 0)  �'´  � + 21 − � , � < 1 �O´  �O + 2�2	1 − �� + 22O	1 − ��	1 − 2��  , � < 12 �X´  
 �X + 3�O2	1 − �� + 6�2O	1 − ��	1 − 2��  + 62X	1 − ��	1 − 2��	1 − 3�� , � < 13 �j´  
 �j + 4�X2	1 − �� + 12�O2O	1 − ��	1 − 2�� + 24�2X	1 − ��	1 − 2��	1 − 3��+ 242j	1 − ��	1 − 2��	1 − 3��	1 − 4�� , � < 14 

GP3(ξ=0)  �'´  � + 2 �O´  �O + 2�2 + 22O �X´  �X + 3�O2 + 6�2O + 62X �j´  �j + 4�X2 + 12�O2O + 24�2X + 242j 
Type-3 EVD 
(3-parameter 
Weibull) 

 

�'´  � + 2}' �O´  �O + 2�2}' + 2O}O �X´  �X + 3�O2}' + 3�2O}O + 2X}X �j´  �j + 4�X2}' + 6�O2O}O + 4�2X}X + 2j}j 
Weibull 
(2- parameter) 

 

�'´  2}' �O´  2O}O �X´  2X}X �j´  2j}j 

*}E = ~ +1 + E4- 

 
Table 2. Parametric relations of probabilistic models for certain model characteristics 
 

Model  
characteristics 

Parametric relations of probabilistic models 

  
GP3 
ξ > 0    

 
GP3 
ξ = 0 

Type-3 EVD 
(3-parameter Weibull) 
 

 
2-parameter Weibull 

Mean 
 

� + 21 − �, � < 1 

� + 2 � + 2}' 
 

2}' 
 

Variance 
 

2O	1 − ��O	1 − 2��, 
� < 12  

2O 
 

2O8}O − }'O] 
 

2O8}O − }'O] 
 

Skewness 
 

2	1 + ���1 − 2�	1 − 3�� ,  
� < 13 

2 
 

}X − 3}'}O + 2}'X	}O − }'O�WN  

 

}X − 3}'}O + 2}'X	}O − }'O�WN  

 

Kurtosis 3	1 − 2��	2�O + � + 3�	1 − 3��	1 − 4�� , 
� < 14 

9 
 

}j − 4}'}X + 6}O}'O − 3}'j	}O − }'O�O  

 

}j − 4}'}X + 6}O}'O − 3}'j	}O − }'O�O  

*}E = ~ +1 + E4- 
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• CHF by Taylor´s theorem for 
 → 0 is also satisfied as: 
 ̅ = � + (	'�4�,                                                                                                          (72) 

 
This is the mean of GP3 distribution (Table 2). 
 

• If a random variable X has moments up to mth order, then the CHF�9	
�  is m times  
continuously differentiable. Ie. 
 7	9�� = 	−������	0�                                                                                                                     	73)   
 
This property is also satisfied by the CHF of GP3 distribution. 
 
The MGF of the type-3 EVD is also derived to obtain the properties of the distribution. The 
expressions of the first 4 raw moments and the parametric relations of the basic properties of 
the distributions obtained therein from the MGF are given in Tables 1 and 2. By assigning  
µ = 0, all properties of 2-parameter Weibull distribution can also be obtained from the MGF 
of the type-3 EVD.   
 
Model estimations by the method of L-moments are demonstrably superior to the existing 
previous methods such as MLE, method of moments etc. The first 4 L-moments of GP3 and 
type-3 EVD that facilitates the parameter estimations of the 3 parameter models are 
provided. The model parameters can be estimated numerically. 
 
5. CONCLUSION 
 
The GP3 distribution along with the type-3 EVD is widely applied in extreme event 
estimations. Hence the CHFs of the GP3 distribution for shape parameters � ≠ 0  and � = 0 
are derived in explicit closed forms. The CHF of type-3 EVD is also derived in a closed form 
which is simple and lucid. The MGFs of the above distributions are also derived and 
parametric relations are obtained for certain basic properties of the distributions. 
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