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Abstract
Transmission measurements are essential from fibre optics to spectroscopy. Quantum theory
dictates that the ultimate precision in estimating transmission or loss is achieved using probe
states with definite photon number and photon-number-resolving detectors (PNRDs). Can the
quantum advantage relative to classical probe light still be maintained when the detectors fire
due to dark counts and other spurious events? We demonstrate that the answer to this question is
affirmative and show in detail how the quantum advantage depends on dark counts and increases
with Fock-state-probe strength. These results are especially pertinent as the present capabilities
of PNRDs are being dramatically improved.

Keywords: quantum optics, quantum metrology, transmission measurements,
photon-number-resolving detectors

(Some figures may appear in colour only in the online journal)

1. Introduction

Quantum metrology promises improvements in estimation
precision relative to classical probes and measurement devices
using a comparable amount of resources [1–11]. These advant-
ages are present in transmission estimation and mathemat-
ically equivalent problems [12–29] and have been experi-
mentally demonstrated on numerous occasions [30–43], with
applications including ellipsometry [44–46], spectroscopy
[47–50], and the characterization of quantum devices [51–54].

The method guaranteed by quantum metrology to be
optimal for measuring transmission requires detectors cap-
able of resolving the finest possible energy differences: they
must discriminate between different numbers of photons arriv-
ing at the detectors [19, 21]. Such photon-number-resolving
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detectors (PNRDs) have been maturing over the last few years
[55–62], with certain architectures now capable of detecting
up to 100 photons [63, 64], paving way for these quantum
advantages.4 What, then, occurs in the realistic situation
that these detectors are imperfect? In particular, what hap-
pens when the detectors register spurious incident photons,
which may come from another mode or intrinsic noise in the
detector? This question has been addressed in the context of
detectors capable only of discriminating between the presence
and absence of photons [66]; we here study the important scen-
ario of the effect of dark counts on PNRDs capable of discrim-
inating between arbitrary numbers of photons.5

There are a variety of PNRD architectures, each with dif-
ferent characteristics that motivate our study. Transition-edge
sensors (TESs), for example, directly resolve the different
amounts of energy imparted by different numbers of photons

4 Alternative schemes for inferring photon-number distributions without
PNRDs are also available [65].
5 PNRDs subject to dark counts have been studied in the context of estimating
a relative phase [67].
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to infer a particular photon number. These devices must be
extremely well calibrated and boast negligibly low dark count
rates caused by intrinsic noise in the TES [68]. However, the
low dark count rates can be overwhelmed by any stray light
impinging from an undesired mode, so these spurious noise
counts must be accounted for in any investigation. Another
example are multiplexed superconducting-nanowire detect-
ors (SNDs), where incident light is split into a large number
detectors capable of detecting the presence or absence of light
and the photon number is inferred from the total number of
detectors that fire [69]; moreover, an SND has recently been
used to directly count up to four photons [62]. These then
have to deal with dark count rates that are orders of mag-
nitude larger than those of a TES, again motivating our study.
Photon-number-resolving cameras are also increasingly being
used with a wide range of applications from characterizing
unknown sources [70] to quantum imaging [71], with higher
dark count rates than those of cryogenic detectors. Further use
of these detection technologies in quantum sensing and met-
rology necessitates our study of dark counts in optimal trans-
mission estimation. We show how to analyze and maintain
quantum advantages using realistic devices that are noisy due
to anything other than the light they are trying to measure.

We study transmission estimation from the perspective of
Fisher information, which quantifies the minimum uncertainty
one can attain in estimating a transmission parameter. We use
the Fisher information paradigm to compare classical (coher-
ent) and quantum (Fock) probe states in their sensing perform-
ance using both ideal and realistic detectors to measure the
transmitted light, through an analysis using the true photo-
counting statistics underlying noisy PNRDs. This allows us
to demonstrate the marked quantum advantages of quantum
probe light and how they vary with detector noise and other
imperfections in realistic scenarios.

1.1. Mathematical preliminaries

Any transmission, reflection, or loss for a bosonic mode anni-
hilated by â can be mathematically described by the input-
output relation

â→ ηâ+
√

1− η2v̂. (1)

This transmits some of the light to another mode, annihilated
by v̂, that is initially in its vacuum state and can account for the
combined effect of arbitrarily many transmissions, reflections,
and losses. It even accounts for detector imperfections that
are treated as loss, which cannot be distinguished from loss
prior to the detector; for example, if the transmission before
the detector is η0 and the detector inefficiency is characterized
by a transmission ηd, the overall transmission only depends
on the total effect η = η0ηd. We refer to the real parameter η
as the transmission probability amplitude that we are trying to
estimate, where the transmission probability is η2. To find the
overall effect on the mode of interest, we trace out the mode
annihilated by v̂, which tends to create a mixed state for most
quantum input states [72–78].

The crucial quantity for evaluating the power of a measure-
ment procedure is the Fisher information. Given a probability
distribution {pm} that depends on the parameter of interest, the
Fisher information is defined as

F(η;{pm}) =
∑
m

pm

(
∂ lnpm
∂η

)2

=
∑
m

p−1
m

(
∂pm
∂η

)2

. (2)

It provides a lower bound to the ultimate precision with which
any unbiased estimator can be constructed, quantified through
the Cramér-Rao bound

Var(η)⩾ F(η;{pm})−1. (3)

This decreases as 1/M when identical measurements are per-
formed M times, so we here consider the optimal single-
shot (M= 1) measurement. For a given probe, one can max-
imize the Fisher information over all possible measurement
strategies to arrive at the quantum Fisher information, which
has many useful properties [79] including methods for directly
calculating the maximum without needing to manually optim-
ize equation (2).

We define our input states in terms of a superposition
over states with definite photon number (Fock states) |ψ⟩=∑

n⩾0ψn|n⟩, where |n⟩= â†n|vac⟩/
√
n! and â|vac⟩= 0. Using

the quantum Fisher information, one can show that the best
setup for estimating the value of η is to begin with a Fock state
|N⟩, apply the loss transformation of equation (1), then meas-
ure the photon-number distribution [21]

pm = ⟨|m⟩⟨m|⟩ . (4)

This achieves the maximum Fisher information of

F|N⟩(η) = 4
N

1− η2
. (5)

In comparison, a classical input state with the same average
energy |α|2 = N, |α⟩= e−|α|2/2∑∞

n=0
αn
√
n!
|n⟩, only has a max-

imum (quantum) Fisher information of 4N, so the quantum
scheme outperforms the classical limit by the factor of 1− η2

using the same (optimal) measurement strategy.
Now, when the detector has spurious counts such as dark

counts, the measured photon-number distribution will differ
from the state’s underlying distribution. How does this affect
the results? We find the true expected distribution in the pres-
ence of noise and detector imperfections. This allows us to
quantify the Fisher information gleaned by a realistic detector,
which we can again inspect for quantum advantages relative
to classical input light. We demonstrate the quantum advant-
ages attainable by Fock states with imperfect detectors in this
important task of transmission sensing.

2. Effects of dark counts

2.1. Photon-number distributions

We know from photodetection theory that

|m⟩⟨m|=:
n̂me−n̂

m!
:, (6)
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where n̂= â†â and : · : is the normal-ordering operator that
places all âs on the right side of all â†s. This facilitates the
definition of an operator with spurious counts by replacing n̂
with n̂+ ν, where ν is the dark count rate [80–82]. The prob-
ability of registering m photons is then given by

pm =

⟨
:
(n̂+ ν)me−n̂−ν

m!
:

⟩
= e−ν

m∑
k=0

νm−k

(m− k)!
⟨|k⟩⟨k|⟩ . (7)

We can consider two probe states that have already been
subject to loss:

|α⟩ → e−|ηα|2/2
∞∑
n=0

ηnαn√
n!

|n⟩= |ηα⟩ (8)

and

|N⟩⟨N| →
N∑
n=0

(
N
n

)
η2n

(
1− η2

)N−n |n⟩⟨n|. (9)

By calculating their true measured photon-number distribu-
tions using equation (7), we can evaluate the Fisher informa-
tion from each distribution to see how well they truly perform
in realistic conditions.

Coherent states yield the true distribution

pm(|α⟩) = e−ν
m∑
k=0

νm−k

(m− k)!
e−|ηα|2 |ηα|2k

k!

=
(|ηα|2 + ν)me−(|ηα|2+ν)

m!
,

(10)

which can also be directly inferred from the normal-ordered
prescription. We can then use the definitions of the conflu-
ent hypergeometric function U and the generalized Laguerre
polynomials L to find the true photon-number distributions for
Fock states that have been subject to loss:

pm(|N⟩) = e−ν
m∑
k=0

νm−k

(m− k)!

(
N
k

)
η2k
(
1− η2

)N−k

=
e−ν(−η2)m

(
1− η2)N−m

U
(
−m,−m+N+ 1, (η

2−1)ν
η2

)
m!

= e−νη2m
(
1− η2

)N−m
L(N−m)
m

(
ν(1− η−2)

)
, (11)

where the binomial factor accounts for m,k> N and there
is always some nonzero probability of measuring any large
photon number m≫ N.6

An alternative method for obtaining the true underlying
photon-number distribution may work better for arbitrary ini-
tial states. Instead of calculating equation (7) after a probe has
been subject to loss through equation (1), we can enact the
substitution n̂→ η2n̂+ ν and calculate expectation values in

6 Note similarities with the matrix elements of the displacement operator D

that enactsD(α)|vac⟩= |α⟩: ⟨n|D(ξ)|m⟩=
√

m!
n!
ξn−me−|ξ|2/2L(n−m)

m (|ξ|2)
[83].

the states before loss has occurred.7 For a general state that
has not yet been subject to loss, we thus find the probability
distribution including loss and dark counts to be

pm =

⟨
:
(η2n̂+ ν)me−η2 n̂−ν

m!
:

⟩

=
e−ν

m!

m∑
k=0

(
m
k

)
η2kνm−k

∞∑
l=0

(−η2)l

l!

⟨
: â†k+lâk+l :

⟩
. (12)

Pure states then yield a convex combination of the Fock-state
results from equation (11):

pm(|ψ⟩) =
e−ν

m!

m∑
k=0

(
m
k

)
η2kνm−k

∞∑
l=0

(−η2)l

l!

×
∑
n

|ψn|2
n!

(n− k− l)!

=
e−ν

m!

∑
n

|ψn|2
m∑
k=0

(
m
k

)
η2kνm−k (1− η2)n−k

(n− k)!
n!

= e−ν
∑
n

|ψn|2
(
1− η2

)n−m (
η2
)m
L(n−m)
m

(
ν− ν

η2

)
.

(13)
The results for mixed-state inputs are similarly given by con-
vex combinations of the results for pure-state inputs.

2.2. Fisher information

When the spurious count rate ν is known a priori, an estimate
of η provides the Fisher information as in equation (2). If, how-
ever, ν is not known, one must treat it as a nuisance parameter
[86–88]. This is done by extending the Fisher information into
a symmetric matrix with components

Fij =
∑
m

1
pm

∂pm
∂θi

∂pm
∂θj

(14)

and using it to provide a lower bound on the covariance matrix

Cov(θi,θj)⩾
(
F−1

)
ij
. (15)

This serves to only increase the minimum uncertainty, with

Var(η)⩾ 1
Fηη −F2

ην/Fνν
. (16)

2.2.1. Coherent-state (classical) inputs. We start by consid-
ering ν to be known. For coherent states, we have

∂ηpm(|α⟩) = 2η|α|2pm(|α⟩)
(

m
η2|α|2 + ν

− 1

)
, (17)

7 A related procedure for adding spurious noise counts is to consider a bath
of thermal photons instead of the vacuum operator in equation (1); this
has recently been studied in the context of optimal transmission sensing in
references [84, 85] and converges to the present procedure n̂→ η2n̂+ ν in
the limit of a large number of thermal modes [81].
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yielding

Fηη(|α⟩) =
4|α|4η2

|α|2η2 + ν
. (18)

We again write the average input energy as |α|2 = N to show
how the minimum uncertainty decreases with energy

min[Var(η)] =
1
4N

→ 1
4N

+
ν

η2N2
. (19)

Intuitively, the extra uncertainty contributed by dark counts
increases for increased dark count rates ν and decreases for
increased transmission probability η2 and increased probe
state energy N; small transmissions and weak coherent states
are overwhelmed by dark counts.

Could we use this setup to instead measure the dark counts
with coherent states? If the loss parameter were known a pri-
ori, we would use

Fνν(|α⟩) =
1

η2N+ ν
. (20)

These dark counts would then be easier to estimate by using a
weak coherent state or a setup with a small transmission prob-
ability relative to the dark count rates (η2N≪ ν).

The final element required for evaluating this estimation
procedure using the tools of nuisance parameters is the off-
diagonal term

Fην = Fνη =
2|α|2η

|α|2η2 + ν
. (21)

This makes the Fisher information matrix F singular—one
measurement cannot be used to simultaneously measure both
of these two parameters! It is impossible to measure the loss
parameter using coherent state inputs when nothing is known
a priori about the dark count rate and vice versa. This is, in
fact, similar to the problem of doing the measurement when
the input coherent state strength is not known, because the out-
put cannot distinguish between loss and a weaker input. One
can see this directly by noting that the probability distribution
only depends on (|α|,η,ν) through a single functional form
η2|α|2 + ν, so it is of course impossible to tease the paramet-
ers apart with this measurement strategy alone, as is known
from studies of singular Fisher information matrices [89–91].

How would this change if we had some a priori inform-
ation? Say that we already gained some Fisher information f
about ν in an alternate experiment. Then, since Fisher inform-
ation is additive, we would find

F(|α⟩;η,ν) = 1
η2N+ ν

(
(2Nη)2 2Nη
2Nη 1

)
+

(
0 0
0 f

)
. (22)

Inspecting the ηη element of the inverse, which gives us the
minimum uncertainty for estimating η, we find

Var(η)⩾ 1
Fηη −F2

ην/(Fνν + f)
=

1
4N

+
ν

4η2N2
+

1
4N2η2f

.

(23)
The extra a priori information f about ν diminishes the uncer-
tainty on η to its theoretical minimum in the presence of dark
counts, and helps get there faster with stronger coherent states
and larger transmission. With tiny transmission, more a priori
information about dark counts is required to well estimate the
transmission parameter using coherent probe states.

Another idea would be to repeat this experiment twice with
two different coherent state energies qN and (1− q)N. The
total Fisher information would be

F(|α⟩;η,ν) = 1
η2qN+ ν

(
(2qNη)2 2qNη
2qNη 1

)
+

1
η2(1− q)N+ ν

(
(2(1− q)Nη)2 2(1− q)Nη
2(1− q)Nη 1

)
, (24)

yielding the minimum uncertainty

Var(η)⩾ η2N+ 2ν
4η2N2(1− 2q)2

⩾ 1
4N

+
ν

2η2N2
. (25)

The minimum is obtained when q= 0 or q= 1, which makes
sense given that the value of ν is best estimated when N= 0
and that of η when N is maximal, and this minimum is equi-
valent to the case where the a priori information known about
ν is f= 1/ν. In fact, if the figure of merit is the amount of
energy used in the probe, one can get an unlimited amount of
information about the dark count rate ν by collecting Fisher
information 1/ν for zero input probe energy and repeating the
process a large number of times. This helps motivate the con-
clusion that, in practice, ν tends to be known a priori.

2.2.2. Fock states. The first difference we notice between
coherent-state inputs and Fock-state inputs is that pm(|N⟩)
depends differently on η, N, and ν, so there is no fundamental
barrier to simultaneously estimating any of these in a single
measurement with a Fock state. Still, to compare with coher-
ent states, we might as well assume the parameters other than
η to be known a priori, only focusing on the Fηη element of
the Fisher information matrix.

The Fisher information is given by the sum over all m of
the positive terms

1
pm

(
∂pm
∂η

)2

=
4e−νη2m−6

(
1− η2

)−m+N−2
[
η2

(
m−Nη2

)
L(N−m)
m

(
ν− ν

η2

)
+ ν

(
η2 − 1

)
L(N−m+1)
m−1

(
ν− ν

η2

)]
2

L(N−m)
m

(
ν− ν

η2

) . (26)
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Figure 1. Fisher information for estimating a transmission parameter η with PNRDs capable or resolving up to 30 photons versus dark
count rate ν and transmission probability amplitude η. All of the input states have average energy N= 1. Fock states always outperform
coherent states, with Fisher information increasing as 1/(1− η2) for large η to present a quantum advantage. We also include for
comparison the performance of coherent states not subject to spurious dark counts, the planar curve in the image, to show that Fock states
subject to spurious counts still outperform ideal coherent states. Coherent states with dark counts interpolate between the same scaling with
η as Fock states for small η and the same behaviour as coherent states with no dark counts for large η.

We can analytically compute the sum for the two terms in the
expanded square that do not have a Laguerre polynomial in the
denominator, leaving us with

Fηη(|N⟩) =
4
[(
η2 − η4)N− ν(ν+ 1)

]
η2(1− η2)2

+ 4e−νν2
∞∑
m=0

η2m−6
(
1− η2

)N−m L
(N−m+1)
m−1

(
ν− ν

η2

)
2

L(N−m)
m

(
ν− ν

η2

) .

(27)

In the small-ν limit, we see the beginning of the deviation from
Fock states being ideal as before:

Fηη(|N⟩) =
4N

1− η2
− 4

η2 (1− η2)
2 ν+O(ν2), (28)

while the large-ν limit (which is normally avoided in reason-
able experiments) shows a behaviour independent from N yet
retains the enhanced scaling with large transmissibility:

Fηη(|N⟩) =
4
[(
η2 − η4

)
N− ν(ν+ 1)

]
η2 (1− η2)

2 +O
(
1
ν

)
. (29)

To continue, we must analyze the Fisher information

for Fock states numerically. Since each term 1
pm

(
∂pm
∂η

)2
in

equation (26) is positive, truncating the sum at some m will
always provide less information than truncating it at a lar-
ger m. This directly implies that PNRDs capable of resolving
more photons will always providemore information than those
capable of resolving fewer photons. We perform this trunca-
tion at a sufficiently large number such that we do not have
to worry about edge effects where more photons arrive at the

detector than can be distinguished by such; this large num-
ber is determined by the total intensity N+ ν that a detector
might register. Fock states up until N≈ 4–8 have been exper-
imentally generated [92–94] and dark count rates tend to be
much smaller than unity, so current PNRD technologies cap-
able of resolving 10–100 photons should all suffice to avoid
edge cases. In the remaining work we truncate our sums at
m= 30.

We first compare Fock states’ performance to that of coher-
ent states for different values of the transmission parameter
η and the dark count rate ν. In figure 1, we can see how
Fock states withN= 1 always outperform coherent states with
|α|2 = 1 in the presence of dark counts for all values of ν and
η, extending their advantages from the ν= 0 case. We can
also see that Fock states even outperform coherent states when
the coherent states are not exposed to dark counts, so long as
the dark count rates are sufficiently low and the transmission
probability is sufficiently high; such a comparison is required
when one compares the use of a single strong coherent state
against a multitude of single-photon states with total compar-
able energy. This behaviour is reproduced for all N that we
evaluated.

All Fock states retain their superior scaling with 1− η2

relative to coherent states. In contrast to the case with zero
dark counts, however, different Fock states present different
advantages. To compare the various Fock states, we scale their
Fisher informations by 1− η2 and byN to directly inspect their
relative performance in figure 2. It is then clear that, in the
presence of nonzero dark counts, larger Fock states with more
energy provide the most information for a given amount of
energy, breaking the equivalence between different Fock states
in the ν= 0 regime of equation (5) and helping motivate the
generation of larger Fock states [94].
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Figure 2. Scaled Fisher information for estimating a transmission parameter η with PNRDs capable or resolving up to 30 photons versus
dark count rate ν and transmission probability amplitude η. We have cut out sections of the curves (from ν= 0.6–0.8 for N= 5, ν= 0.5–0.8
for N= 3, ν= 0.4–0.8 for N= 7, and ν= 0.3–0.8 for N= 9) to see their nested structures. All of the input states are Fock states with
various energies N and have Fisher information favourably growing as 1/(1− η2), so we scale the Fisher information by (1− η2)/N to
inspect the advantages per photon. Fock states with more photons perform the best in the realistic scenario where dark counts are nonzero.

3. Conclusions

We have performed a detailed comparison between coher-
ent (classical) and Fock (quantum-optimal, definite-photon-
number) states for sensing a transmission parameter η using
realistic PNRDs that are subject to spurious counts such as
dark counts. The dramatic advantages of Fock states over
coherent states is retained in this realistic scenario, where now
Fock states with more energy are superior to weaker Fock
states. This result helps spur the production of Fock states
with more photons and of detectors capable of resolving these
large numbers of photons, with applications in the quantum-
enhanced sensing of a host of different effects.
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