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Abstract
This work details a mass rate-of-rise (mROR) apparatus and analysis method for the accurate
and precise determination of capillary wick parameters: permeability, K, effective pore radius,
reff, and porosity, ε. Three factors were examined: (a) the accuracy of the theoretical models and
their curve-fitting approaches associated with the mROR technique, (b) the influence of the
experimental procedure on repeatability, and (c) how the uncertainty of the experimental input
parameters propagates through the data analysis procedure and compounds the overall
uncertainty of the wick parameters (K and reff). Four models and fittings methods were
investigated: the Lucas–Washburn method, the gravity-based dm/dt method, the gravity-based
t–m method, and the gravity-based m–t method. It is demonstrated that the m–t method
developed here shows the lowest error and, equally importantly, that it is free of user decisions
in the context of ‘data scrubbing’ because the entire mROR data set is used in its raw form. To
test accuracy and repeatability, a precision-controlled mROR apparatus is proposed.
Experiments were performed for commercially available wicks. A robust Monte Carlo error
analysis method was developed and applied to quantify the overall uncertainty in the wick
parameters as a function of the input uncertainties of all measured quantities.

Keywords: heat transfer, two-phase flow, heat pipes, wicks, porous structures, permeability,
effective pore radius

(Some figures may appear in colour only in the online journal)

1. Introduction

Passive two-phase heat transfer devices, such as heat pipes
and vapor chambers, are widely used in thermal management
systems because of their passive operation, reliability, light
weight, and high effective thermal conductivity. Porous metal
capillary structures (wicks) are key components of heat pipes
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and vapor chambers because they provide the required capil-
lary pressure to pump liquid from the condenser (heat sink) to
the evaporator (heat source) region. As such, accurate charac-
terization of wick parameters—in particular, the permeability,
K, effective pore radius, reff, and porosity, ε—is crucial for
modeling heat pipes and vapor chambers as well as designing
passive two-phase thermal management systems.

Permeability is an intrinsic property of porous mater-
ial that relates the flow rate to the resulting pressure drop.
Together, the permeability, porosity, and pore radius, dictate
the hydraulic performance of the wick. Several methods have
been used to characterize the wick parameters separately, such
as the bubble point [1] and the rising meniscus [2] methods
for effective radius and the forced liquid flow method for
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Figure 1. Wick hydraulic performance characterization methods: (a) mass rate-of-rise (mROR) method, (b) optical height rate-of-rise
(hROR) method.

permeability [3–5]. However, the rate-of-rise (ROR)method is
commonly used because it can determine both K and reff sim-
ultaneously from a single experiment. This method involves
dipping thewick vertically into a liquidwell (typically ethanol,
acetone, or water) which then rises up within the wick under
capillary action. The amount absorbed is tracked with time
either directly, by measuring the mass of the fluid uptake with
a load cell or scale (m–t technique, figure 1(a)), or indirectly,
by visually monitoring the liquid front progress along the wick
using an IR or optical camera (h–t technique, figure 1(b)). To
extract the wick parameters, the data is fitted to the appropriate
theoretical models that govern capillary rise phenomena.

Several models exist for describing the rising meniscus in a
porous medium, and these differ depending on which forces
can be regarded as negligible in the momentum equation.
Lucas [6] and Gardner [7] were the first to propose analyt-
ical models for the capillary rise phenomena; they assumed
that the capillary pressure is balanced only by the viscous
pressure drop. The second (and most popular) model is the
gravity-based model which includes hydrostatic and viscous
forces in balancing the capillary pressure [8, 9]. Several fit-
ting approaches can be employed with these models to predict
permeability and effective pore radius independently. How-
ever, for these approaches, the user must carefully choose the
data set from the full ROR curve such that the data sections
are appropriate for the force balance assumption embedded in
the theoretical model [10]. This ‘data scrubbing’ raises ques-
tions about the reliability of the ROR method for predicting
both parameters simultaneously and leads to difficulties when
comparing wicks across different studies. Some studies pro-
pose that it is more appropriate to couple the ROR experi-
ment with the forced liquid flow method to improve accuracy
[3–5, 11, 12]. Here, the ROR method is used to determine the

capillarity factor (∆Pcap K) and the forced liquid flow method
is employed to predict the permeability (K). Additionally, a
third experiment is then required for the measurement of wick
porosity.

In addition to there being a variety governing equations and
ways and times to apply them, there is also a lack of con-
sistency regarding the experimental procedure for the ROR
method. In the context of this being a measurement technique,
there is often missing, incomplete, or inconsistent information
regarding crucial testing steps, including (but not limited to)
the immersion length, data scrubbing and/or smoothing pro-
cedure, repeatability, and uncertainty analysis. With regard to
the latter, uncertainty analysis is typically addressed by anti-
cipating the error in the height [4, 13, 14] or the mass [13, 15]
without propagating errors of the measured quantities to K
and reff. Other methods rely on experimental repeatability as a
measure of confidence in the measured quantities [16] or com-
paring results with different fluids with similar surface ten-
sion and wetting properties [17]; however, these can be con-
sidered qualitative measures of confidence because they do not
account for measurement uncertainty of the instrumentation.

Despite extensive use of the ROR method in the literat-
ure, at present there is no standardized experimental approach
which includes instrumentation, a repeatable test procedure,
data analysis method, and robust uncertainty analysis. It is the
aim of this work to address these shortcomings by introdu-
cing a straightforward and consistent protocol, free from user
judgment and intervention, for capillary ROR experiments.
This includes a clear justification of the chosen data analysis
method, a description of the apparatus and instrumentation,
and an explanation of an uncertainty analysis procedure that
propagates instrument measurement error onto the measured
quantities.
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2. ROR models and theoretical background

When a wick is held vertically and brought into contact with
a quiescent pool of liquid, initially the liquid rises rapidly into
the wick structure and subsequently decelerates as gravita-
tional, frictional, inertial, and/or evaporation-induced forces
increasingly act on the fluid. Themomentum equation describ-
ing this fluid flow is complex and, as a result, several models
have been developed which neglect some of these forces: spe-
cifically, (a) the Lucas–Washburn model [6, 7], (b) the gravity-
based model [8, 9], and (c) the Fries evaporation-based model
[17]. The Lucas–Washburn model [6, 7] assumes no evap-
oration, neglects the hydrostatic pressure at the start of the
wicking process, and presumes that the capillary pressure is
balanced only by viscous pressure drop. In this model it is
assumed that the liquid travels with a uniform velocity, the
wick is homogenous, and the viscous pressure loss in a por-
ous medium is governed by Darcy’s law. Thus, the momentum
equation is simplified to

2σ
reff

=
µε

K
h
dh
dt

(1)

where ε, K, and reff are the wick porosity, permeability, and
effective pore radius of the wick, respectively. h and t are the
liquid height and the wicking time, respectively. Finally, µ and
σ are the liquid viscosity and surface tension, respectively. The
first term on the left side of equation (1) represents the max-
imum capillary pressure obtained using the Young–Laplace
equation. Rearranging and integrating equation (1) gives

h2 =
4σK
εµreff

t. (2)

This model can be represented in terms of the absorbed
mass because,

m= ρ T W h ε (3)

where T and W are the wick thickness and width, while ρ is
the fluid density such that,

m2 = 2A t (4)

where

A=
2σKε(TWρ)

2

µreff
. (5)

In the mass method (m–t), the wick performance factor
(K/reff) is obtained by plotting a linear relationship between
m2 and t in equation (4). The permeability and the effect-
ive pore radius are independently predicted by measuring the
maximum achievable mass gain or height; this requires very
long samples and may take several days [17].

Another widely used model is the gravity-based model [3,
4, 11, 13, 14, 18–21], which accounts for the gravitational
force by adding further terms to equation (1) and the model
is expressed in terms of the mass gain as

dm
dt

=
2σKε(TWρ)

2

µreff

1
m

− KgTWρ2

µ
(6)

or

dm
dt

=
A
m

−B (7)

where

B=
K g T Wρ2

µ
. (8)

Typically in this model, three fitting approaches are used
to determine the constants A and B. The technique most fre-
quently used is to perform a linear fit of the measured data to
equation (7) by setting x = 1/m, and y = dm/dt (heretofore
referred to as the dm/dt method). The second approach is to
integrate equation (7) in terms of t(m), not m(t), resulting in
equation (9); this is referred to as the t–m method. Thus, con-
stants A and B are predicted by carrying out a non-linear curve
fit of the entire data set according to

t=−m
B
− A
B2

ln

(
1− B m

A

)
. (9)

The third approach is very similar to the previous one; how-
ever, it integrates m as a function of t, yielding

m(t) =
A
B

[
1+W

(
−e−1 − B2 t

A

)]
(10)

where,W is the LambertW function [22]. This method is here-
tofore referred to as them–tmethod. Functionally, the t–m and
m–t methods require that a non-linear regression analysis be
performed to fit the analytic curve to the experimental data,
resulting in predictions of A and B. If ε is known from a sep-
arate experiment, K and reff can then be calculated.

3. Experimental apparatus and methodology

3.1. Sample preparation

Wicks from three commercially available flat heat pipes (lis-
ted in table 1) were characterized experimentally using the
ROR methodology and apparatus described herein. By care-
fully machining the edge material, two wick samples were
extracted from each flat heat pipe and subsequently cut to a
length of approximately 120 mm for testing. After machin-
ing, the wicks were cleaned in an ultrasonic bath of deionized
water. Figure 2 shows photos of the wick samples before and
after machining.

The width of each wick was measured at 12 different loca-
tions; these measurements are presented in table 1. The wicks
were cross-sectioned at three locations along their length and
imaged using a Leica MZ10 F stereomicroscope (figure 2);
thus, it was possible to observe the uniformity of the sintered
powder and measure the wick and base plate thicknesses,
including their variability. The photos were thereafter ana-
lyzed using ImageJ software. The wick thickness was quite
uniform, except in Wick 3 which had slight non-uniformity.
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Table 1. Specifications of the wicks of the tested heat pipes.

Heat pipe specifications Measured dimensions

Sample
ID Manufacturer Part number

Heat pipe
length (mm)
X width (mm)

Base plate
thickness,
Tb (mm)

Wick
thickness,
Tw (mm)

Wick width,
Ww (mm)

Wick 1 Wakefield-Vette 126218 500 × 16.85 0.585 ± 0.013 0.980 ± 0.02 13.81 ± 0.1
Wick 2 Advanced Thermal

Solutions Inc.
ATS-HP-F8L150S38W-356 150 × 11.41 0.356 ± 0.01 0.59 ± 0.01 8.64 ± 0.12

Wick 3 Aavid, Thermal Division
of Boyd Corporation

HP-CWS-F08x47-150-N 150 × 10 0.612 ± 0.01 0.69 ± 0.06 5.07 ± 0.2

Figure 2. Microscopic cross-section and macro photo of each wick and heat pipe before and after sectioning: (a) wick 1, (b) wick 2, and
(c) wick 3.

3.2. Apparatus description

Figure 3 shows a rendering of the mass rate-of-rise (mROR)
apparatus, which consists of three main subsystems: (a) the
capillarity testing section, (b) the computer-controlled mech-
anical gantry, and (c) the data acquisition system.

The test apparatus consists of a digital mass balance
(Radwag AS 310.R2 PLUS) interfaced with a computer which
records the real-time mass measurements at a sampling rate of
10 Hz. A 100 ml glass beaker containing 40 ml of ethanol was
positioned on the balance. When the wick was dipped into the
ethanol pool, the mass gain in the wick wasmeasured by track-
ing the weight loss of the beaker placed on the balance. Evap-
oration from the ethanol pool and from the wick under test was
minimized by fabricating a lid for the beaker with a slot just
large enough to accommodate the sample, such that the open
space was saturated with ethanol vapor [8]. In theory, the ROR
method is not dependent on the fluid used. In practice, how-
ever, the most accurate results are obtained for highly wetting
fluids which have a low volatility to limit errors induced by
the rate of evaporation to the ambient. As such, ethanol is a
popular choice because of its well-known properties, wetting
characteristics, and relatively low volatility [11, 12, 14, 17].

The wick under test was orientated vertically on a fixture
on a movable gantry which travels in the x and z directions.

Movement can be precisely controlled using two stepper
motors interfaced with a PC and control board. To mitigate
the impact of ambient air movement on the balance reading,
the whole assembly was sealed within an enclosure construc-
ted from aluminum profile and acrylic sheets. The x-direction
movement was used to position the sample over the beaker
opening and allowed for the samples to be changed through a
side door in the enclosure (not shown). The mechanical gantry
was controlled in an open-loop configuration which controls
the final position by either a set immersion depth or by meas-
uring instantaneous contact between the wick sample and the
liquid pool. The latter was accomplished by placing electrodes
on the wick and in the liquid pool and measuring the electrical
resistance (continuity) between them using anAgilent 34401A
digital multimeter (DMM), as shown in figure 3 and explained
in section 3.3. The gantry, the DMM, and lab scale were simul-
taneously controlled using a PC and in-houseMATLAB script.

3.3. Experimental procedure

To perform the mROR test, the analytical balance was started
and mass measurements were acquired for approximately 12 s
before initiation of the wicking process. The wick sample was
brought into contact with the working fluid by lowering it until
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Figure 3. Rendering of the mROR facility developed in the current work.

the resistance measurement was triggered, ensuring a near-
zero immersion length. The wick then remained in liquid con-
tact and data was collected for 5 min, after which the wick was
extracted from the pool. Then, another 60 s of data was collec-
ted to measure the mass gain of the meniscus, as explained in
section 3.5.

3.4. Wick porosity measurement

The mROR method can produce a measurement of the con-
stants A and B (section 2) by regression fitting of the chosen
governing equation to the experimental data. However, this
is not sufficient to isolate the desired parameters K, reff, and
ε because they are grouped together in the constant B. Here,
we propose a straightforward technique whereby a separate
facility is not required to determine the porosity, and we sub-
sequently verify this method against an established measure-
ment method.

3.4.1. Combined m–t and h–t method. Height and mass
versus time measurements were acquired to determine the
experimental porosity of each sample wick (see table 5 in
section 4.3). Figure 4 illustrates how the h–t and m–t tech-
niques can be combined to determine porosity. To record the
height of the liquid rising in the wicks, an IR thermal camera
was placed in front of the enclosed apparatus, as per figure 4. A
FLIR Thermacam™ P25 IR camera recorded 720× 480 pixel
high resolution full spectrum color images with a 30 Hz frame
rate and real-time 12-bit data processing resolution and accur-
acy. The IR camera could accurately identify the front loca-
tion based on the difference in emissivity between the liquid
and sample material. Thus, the liquid wicking front, h(t), and
meniscus at the fluid reservoir, h = 0, were accurately identi-
fied and recorded.

Post-processing steps were applied to the images to meas-
ure the rise heights as a function of time. The time zero for
the m–t and h–t data was matched so that each experimental
time point had a corresponding height and mass value. When
the wicks reach their maximum imbibition height, just prior to
extraction from the pool, the height and mass can be used to
calculate the porosity as

ε=
mmax

ρTWhmax
. (11)

The uncertainty of the porosity was based on the height
error owing to the camera pixel resolution (±0.5 mm), mass
error (±0.0012 g), and wick geometry variability. To ensure
quality and repeatable results, the porositymeasurements were
taken three times for eachwick andwere found to be consistent
to within about 2.5%, which is within the predicted measure-
ment uncertainty.

3.4.2. Porosity verification—micro computed tomography.
To verify the proposed experimental porosity measurement
technique, x-ray computed tomography (XCT) was performed
on the three test wicks. XCT can also be used in scenarios
where it is cost prohibitive to utilize a high-resolution IR cam-
era. XCT is a non-destructive methodology that can analyze
concealed morphologies in 3D with fine resolution. Along
with simple bulk properties like volume and area, it is possible
to visualize and analyze porosity [23, 24], tortuosity [25], and
pore and particle size distribution [26] using established pro-
cessing techniques.

In this work, a Nikon XTH225ST with a 30–220 kV Tung-
sten x-ray source was used to acquire tomographic datasets of
the sample wicks. A beam energy range of 120–140 kV was
used, which corresponded to a practical resolution of ∼3 µm.
The wicks were individually placed, in a vertical orientation,
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Figure 4. Schematic of the experimental height and mass-versus-time apparatus for determination of the wick sample porosity.

Figure 5. XCT procedure from image stitching to porosity analysis of the 3D-reconstructed wick. Here, the volume of low density (i.e. the
pore space) was isolated using deep image segmentation tools, as described by Gobert et al [27].

inside the scanner. The wicks were then scanned at three loc-
ations over an axial distance of 15 mm that covered an image
area of 15 mm2; this is related to the distance of the sample
from the x-ray source and the detector (du Plessis et al [23]).
The stage rotated the wicks between the x-ray source and
detector at a rate of 0.5◦ per image scan; 3000 line-of-sight
images of the x-rays that passed through the samples were cap-
tured. Information on the effects of scan parameters on resol-
ution is available elsewhere [27–29].

Figure 5 outlines the primary steps used to transform the
XCT image stack to a 3D model and separate the wick, pore,
and particle volumes to quantify porosity. The data sets were
exported as a volume file that was then converted into a series
of vertically aligned 2D greyscale tiff images. These images
were used for image processing purposes. The current study
utilizes the image processing platform developed by ORS
Dragonfly (Object Research Systems 2018 [30]), and thus the
following steps were applied to calculate porosity:

(a) The image stack was imported onto the ORS Dragonfly
image processing platform and the image set dimensions
were confirmed; this is normally pre-encoded from the x-
ray microscope.

(b) It was confirmed that no artifacts were evident, and image
filtering was applied to remove ambient noise identified
inside the XCT scanner. The solid copper wick was isol-
ated and registered as a 3D volume.

(c) The pore, particle, and wick regions of interest were
defined by subtracting the base plate using historiographic
image segmentation or deep learning image segmentation
tools [27]. The volume for each region of interest for the
porosity calculation was extracted.

Once these steps were conducted, the porosity of the wicks
was calculated from the ratio of volumes, defined as

ε=
Vpore

Vwick
(12)
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Figure 6. Data correction procedure: (a) weight loss measured by the lab scale; (b) equal and opposite mass uptake by the wick;
(c) corrected data after subtracting the meniscus mass,∆m0; (d) correction for the time lag, ∆t0; and (e) final corrected data.

where, Vpore and Vwick are the volume of the pore and wick
regions, respectively. To ensure measurements represented the
porosity of the entire homogeneous wicks, three scans were
performed at three locations along the wick. The same x-ray
conditions were applied for all scans, and the results for the
three scans were averaged. For this method, it was found that
the wicks were homogeneous with a maximum deviation in
porosity of ±0.025 (<5%) between the scanned sections.

3.5. Data correction

Figure 6 shows the measured mROR data for Wick 1, where
figure 6(a) is the actual weight loss measured by the precision

scale and figure 6(b) is the corresponding mass uptake by
the wick. The data was first corrected for (a) the additional
mass associated with the initial wetting of the side meniscus
(∆m0), and (b) the time interval between the beginning of data
sampling and the start of the wicking event (∆t0).

When the wick first contacts the liquid, an attached men-
iscus is formed, after which the liquid wicks into the capil-
lary structure. As shown in figure 6(b), this causes an imme-
diate increase in the measured mass,∆m0. To account for this
effect, the mass of the meniscus is determined by extracting
the wick at the end of the test period, causing the meniscus to
detach. This results in a sudden drop in mass which is equi-
valent to the meniscus mass [8], as illustrated in figure 6(b).
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Figure 7. Data generation for the Monte Carlo simulation: (a) full data set, (b) close-up of the data range 110 < t < 120, and (c) schematic
representation of the normal probability distribution for m.

Figure 4(c) shows themeniscus-correctedmROR curve, which
must now be adjusted for ∆t0; this is determined by calculat-
ing the root of a second-order polynomial regression fit to four
data points on either side of the crossover point before wicking
commences, as shown in figure 6(d). The time delay includes
the time associated with the delay from the commencement of
data sampling aswell as themeniscuswetting time. Figure 6(e)
shows the final mROR data for this example case.

3.6. Development of uncertainty technique

As discussed, the wick properties are obtained by performing
a least squares regression of the measured mass to one of the
models presented in section 2 to obtain the parameters A and
B; these can then be used to extract the wick parameters,K and
reff, based on the fluid properties, wick geometry, and meas-
ured porosity. As a result, the combined total uncertainty asso-
ciated with the mROR technique depends on two elements: (a)
the uncertainty associated with the model fitting parameters (A
andB), and (b) the uncertainty of input parameters such as fluid
properties, wick geometry, and porosity. The latter are relat-
ively straightforward and are attained by establishing a confid-
ence level for each input parameter. However, predicting the
uncertainty of A and B is somewhat more complex because
each data point of the experimental mROR curve has its own
temporal and mass uncertainties, which are difficult to propag-
ate through least squares regression. Historically, these uncer-
tainties have not been considered.

The present work proposes a robust uncertainty method to
accurately characterizeK and reff independently using aMonte
Carlo simulation method. The approach requires defining a
‘confidence zone’ for each data point based on the measure-
ment uncertainty for mass, m. For this facility, the temporal
uncertainty, t, was negligibly small, so it is omitted here; how-
ever, it can be easily incorporated if desired. Subsequently, all
measurement points are simulated to move randomly with a
normal distribution within each respective uncertainty range,
as illustrated in figure 7, and the fitting parameters (A and B)
were obtained using the non-linear least square regression fit-
ting to the governing equation. A statistically sufficient num-
ber of randomized m versus t data sets are then generated
by repeating the process thousands of times to generate nor-
mal distributions of A and B, where their respective standard
deviations (2σ) reflect the propagated uncertainty of the mass
measurement uncertainty of the scale.

The key temporal factor that affects the uncertainty of the
fitting parameters A and B is the uncertainty of the time at
which the wicking event started, ∆t0, defined in section 3.5.
This was incorporated into the overall uncertainty determina-
tion by first running theMonte Carlo simulation at the nominal
∆t0, as discussed above, then re-running the simulation while
randomly changing the∆t0 a statistically sufficient number of
times, with fixed mass data. The resulting total uncertainty in
A or B is estimated as

ω2 = (ωm− t)
2
+(ω∆ t 0)

2 (13)
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where ωm–t accounts for the propagated uncertainty of the
mass balance and ω∆t0 accounts for uncertainty in the calcu-
lated delay time.

4. Results & discussion

The results section begins by comparing the veracity of the
different mROR models discussed in section 2. This was done
for a hypothetical idealized wick, where the correct results
were known a priori, to isolate the accuracy of the assessment
method so that the most appropriate one could be selected
with rigorous justification. Next, the effect of the immersion
length, something not considered in the past, is discussed for
one of test wicks. Finally, each test wick was experimentally
examined using the selected model, immersion length, and the
newly proposed uncertainty technique.

4.1. Accuracy evaluation of ROR models

One crucial task of the current work is to examine the accur-
acy of each potential mROR model outlined in section 2 and
to assess their appropriateness for predicting K and reff. This
was accomplished by using a hypothetical wick with known
values of A and B. In this way, the model accuracy could be
determined by inputting the wick properties beforehand, gen-
erating clean mROR data (using equations (9) or (10)) and
subsequently applying the prediction model to re-extract the
properties. The discrepancy between the input and output A
and B (or equally K and reff) is indicative of the accuracy of
the approach, quantified as

ErrorA =
A−Ainput

Ainput
(%) ,ErrorB =

B−Binput

Binput
(%) (14)

where, Ainput and Binput are the input parameters of the hypo-
thetical wick, calculated based on reasonable values of the
geometrical and hydraulic properties reported by Feng et al
[18] (see table 2). Figure 8 shows the generated idealized
mROR curve based on Ainput and Binput, hereafter referred to
as the hypothetical wick.

4.1.1. Lucas–Washburn method. The accuracy of the
Lucas–Washburn method was evaluated by plotting m2

versus t using the hypothetical wick data, which is shown in
figure 9(a). Here m2 correlates linearly with t only during the
early stages of imbibition when gravity forces are negligible
(see figure 9(a) inset). When fitted to a straight line, the slope
is equal to 2A, according to equation (4). Figure 9(b) shows
the expected error in the wick parameter A and the R2 value
of the obtained best fit line as a function of the time window
used for regression fitting. The time window given is repres-
ented by the dimensionless time, τ = t/ts, where ts = 375.3 s
is the time required to reach 99% of the maximum absorbed
mass, ms. For instance, figure 9(a) inset shows the time win-
dow up to t = 8 s, giving τ = 0.021 and an error of 20%
despite R2 = 0.9946. Clearly, the error is very sensitive to the
sampling time window and produces unacceptable error, even

Table 2. Assumed parameters of the hypothetical wick.

Parameter Input value

Permeability, K 2.50 × 10−11 m2

Porosity, ε 0.45
Effective radius, reff 150 µm
Wick thickness, T 0.7 mm
Wick width, W 7 mm
A 4.21 × 10−5 (g2 s−1)
B 6.35 × 10−4 (g s−1)

Figure 8. The generated mass data for a hypothetical wick with
A = 4.21 × 10−5 (g2 s−1) and B = 6.35 × 10−4 (g s−1).

with near-unity R2 values. To achieve an error of less than
10%, τ ⩽ 0.0046, which is only about 1.8 s of data-gathering
time for this hypothetical wick. Overall, this method may be
practical for certain families of porous material where the
imbibition rate is comparatively slow, requiring higher ratios
of A/B2; however, it is not practical here, nor is it practical
for typical wicks used in heat pipes and vapor chambers. Fur-
thermore, the method does not estimate the parameter B, so it
can only produce an estimate of the ratio K/reff unless the full
mROR curve is produced which would allow it to be obtained
from the steady-state data.

Practically, this method produces only one of the required
parameters. In addition, relying on goodness of fit (R2) [3, 19]
as a confidence measure has been shown to be insufficient
and can lead to a significant error. Furthermore, the Lucas–
Washburn method only uses the initial linear portion of
the mROR curve, which can be limited for practical wicks
and influenced adversely by the meniscus attachment or the
dynamic movement of the sample. Considering these limita-
tions and the lack of guidelines and strict protocols around user
judgments about data interrogation windows, range of applic-
ability etc, it is not surprising that studies have reported sig-
nificant deviation when comparing Lucas–Washburn predic-
tions to other methods [5, 11]. For these reasons, this method
is deemed inadequate.

4.1.2. The gravity-based (dm/dt) method. To implement the
dm/dtmethod, the measured data comprising the mROR curve
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Figure 9. (a) Best fit line to the Lucas–Washburn model. (b) The error associated with this model.

Figure 10. (a) Hypothetical wick data and its best fit function, (b) deviation of the best fit data from actual continuous input data and the
associated error, (c) linear regression for the continuous data of the hypothetical wick, and (d) linear regression for the data obtained with
the fit function and the associated error.

must first be approximated as a continuous function so that
the time derivative of mass can be estimated. To illustrate
this, the hypothetical wick data was fit to a power law func-
tion (m(t) = a0 + a1tb+ a2tc) with R2 = 0.989, as depicted in
figure 10(a). The functional form and goodness of fit of the
fitting curve represents the first user decision in the process.
As figure 10(b) illustrates, the agreement error is typically

unacceptably large at early times (relative error >5%) and
must be omitted from the analysis, signifying a second poten-
tial user intervention. Subsequently, dm/dt versus m−1 is plot-
ted (figure 10(c)) and a linear regression is performed so that
the parameters A and B can be determined from the slope and
vertical axis intercept (equation (7)). However, the linearity of
the resulting curve is very sensitive to the curve-fitting process.

10
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Figure 11. Fitting the hypothetical wick with (a) continuous data to the t–m method, (b) continuous data to the m–t method, (c) noisy data
to the t–m method, and (d) noisy data to the m–t method.

Despite near-unity R2 and elimination of unacceptably high
fitting error data, some deviation from a straight line is inev-
itable owing to the high curvature of the initial mROR curve
(figure 10(c)). This may suggest that a third user intervention
is appropriate, where data points at higher or lower m−1 are
omitted to maximize R2, for example. However, as the inset
plot of figure 10(c) shows, omitting higher m−1 (lower time)
can have the opposite effect in terms of error on the predicted
value of parameters; further, this is only exposed here because
the values of A and B are known, which is not the case when
implemented in a real situation. Overall, it is the opinion of the
authors that the dm/dt method is inappropriate for a rigorous,
consistently accurate, and procedure-orientated measurement
method.

4.1.3. The gravity-based (t–m) and (m–t) models. Both the
t–m andm–t approaches implement non-linear regression ana-
lysis to fit raw experimental data comprising the mROR curve
to the governing equations (equations (9) and (10), respect-
ively). The regression fitting parameters are A and B, thus
outputting K and reff for a given fluid, wick geometry, and
porosity. Importantly, these methods do not involve any user
decisions around data-scrubbing, fitting range, etc, because
they use the entire mROR data sets.

In this work, the non-linear regression analysis was per-
formed in MATLAB using the lsqcurvefit function and the

Levenberg–Marquardt algorithm. Here, the user only needs
to supply an initial guess for parameters A and B, and the
code optimizes for minimum deviation between the developed
best-fit curve and measured mROR curve. The resulting fit
equations are plotted in figures 11(a) and (b) for the t–m and
m–t approaches, respectively. Although the procedure of both
methods is nearly identical, there are nuances in the fitting pro-
cesses that differentiate them. In particular, the slope of the
t–m curve approaches infinity as time increases, whereas it
approaches zero for the m–t curve. For the former, regression
convergence is not always guaranteed, and a trial-and-error
approach is required for the initial A and B selection. Added to
this, there is non-negligible sensitivity of prediction accuracy
for the initial guess of A and B. Finally, even for the best solu-
tion (which was found iteratively here), there is nearly 10%
error when compared with the ideal hypothetical curve; a com-
parison is shown in figure 11(a). Conversely, the m–t method
achieved almost zero error in both A and B parameters, and
this was insensitive to initial input.

A positive feature of both the t–m and m–t methods is that
they do not require initial smoothing and/or secondary curve-
fitting of the measured data, as required in the dm/dt method,
for example. In order to assess the potential for data scat-
ter (normal in measured data sets) to influence the prediction
accuracy, random noise was added to the originally continuous
hypothetical wick data using the superposition of the MAT-
LAB stairs function and the rand function with an amplitude

11
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Table 3. Comparison between all mROR models.

Performance factors

Data
preprocessinga Fitting range Convergenceb Associated error

Lucas–Washburn
model

Not needed Very sensitive Possible Major

Gravity-based
(dm/dt) model

Mandatory Very sensitive Possible Major

Gravity-based (t–m)
model

Not needed Entire data set Possible with
reasonable initial
guess

Minimal

Gravity-based (m–t)
model

Not needed Entire data set Not sensitive to the
initial guess

Minimal

Excellent a Data preprocessing refers to the cleaning and smoothing step.
Good b For the first and second model, the convergence means reaching high R2.
Fair

of 0.0000 25 g. The resulting ‘noisy’ data plots are shown in
figures 11(c) and (d), along with the best fit regression curves.
It was found that both methods achieved errors identical to
that of the original noiseless curve, indicating robustness in
the approaches.

Table 3 compares each mROR method with respect to key
factors, such as data cleaning/scrubbing steps, fitting range,
convergence, and the associated error. The gravity-based m–
t method is clearly the best choice for predicting wick prop-
erties from mROR experiments and is thus the method used
hereafter.

4.2. Effect of immersion length

To the best of our knowledge, the influence of immersion
length, l, has not been reported in previous studies. It has been
generally reported that the wick sample must be lowered suf-
ficiently to contact the liquid; however, the immersion depth
has not been quantified, presumably because it was diffi-
cult to determine due to experimental apparatus limitations
and/or the meniscus attachment event. This is not the case
with the present facility, where the sample motion is pre-
cisely controlled and the moment of liquid contact is sensed,
giving a precise zeroing with respect to the liquid surface.
It was then possible to test a range of immersion lengths
to explore to what extent these impact mROR curve repeat-
ability and the subsequent level of error on wick parameter
estimation.

Figure 12(a) shows the raw mROR data for Wick 1 for
immersion lengths in the range 0.0 mm ⩽ l ⩽ 2.1 mm. Prior
to each run, the wick was dried using a hot plate and allowed
to cool to ambient temperature. Additionally, the liquid level
was maintained constant between the runs. It can be observed
that for increased immersion length, the mass gain (∆mg) that
occurs when the sample is lifted (here at t =300 s) decreases.
This occurs because the scale measures the net mass, which
is the summation of the mass decrease by the weight of the
immersed part of the wick as the sample is lifted upward and

the mass increase by the meniscus detachment (∆m0). Thus,
∆mg = ∆m only for zero immersion length.

Figure 12 shows the mROR curves after applying the cor-
rections listed in section 3.5. To illustrate the error associ-
ated with not controlling or quantifying the immersion depth,
it is assumed that ∆mg = ∆m even for non-zero immersion
lengths. Clearly, as the immersion length is increased, the
mROR curves shift upwards owing to the incorrect estima-
tion of the meniscus mass. Although the effect may appear
small, table 4 indicates that the influence on the A and B
parameter estimation is non-negligible. For a l = 1.1 mm
immersion depth, the error is around 7% and 3% for A and
B respectively, and these propagate onto the error of the wick
permeability and effective pore radius estimation; thus, they
should either be included as a source of measurement uncer-
tainty or eliminated altogether by the method proposed here
to ensure zero immersion depth. An additional benefit to act-
ively controlling the wick position using the electrical resist-
ance method is its excellent repeatability; figure 12(c) shows
nearly identical mROR curves for three independent tests on
Wick 1.

4.3. Off-the-shelf wick characterization

To illustrate the overall functionality and precision and error
estimation capabilities of the proposed measurement facility,
the commercial wicks prepared in section 3.1 were tested with
the zero-immersion depth method, and the wick parameters
were estimated using the gravity-basedm–tmethod. Figure 13
shows the mROR curves for each sample wick with ethanol
as the working fluid. For each wick, the rise velocity is ini-
tially high due to the negligible gravity effects, and this lasts
for a few seconds. Then, the velocity slows due to the oppos-
ing influences of both frictional resistance and the hydrostatic
pressure of the absorbed liquid. The curves plateau when the
capillary pressure is balanced (primarily by hydrostatic pres-
sure). The noticeable difference in mass uptake between the
different wick samples is largely due to differences in wicks.
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Figure 12. The effect of the immersion length: (a) raw mass data, (b) mass data after correction, and (c) repeatability of three independent
tests.

Table 4. Influence of immersion depth on parameters A and B.

Immersion length,
l (mm) A (kg2 s−1) × 10−9 B (kg s−1) |Al−A0|

A0
x 100% |Bl−B0|

B0
x 100%

0.0 1.92 3.37 × 10−6 0.0% 0.0%
0.6 1.98 3.34 × 10−6 3.1% 0.9%
1.1 2.05 3.47 × 10−6 6.8% 3.0%
1.6 2.10 3.55 × 10−6 9.4% 5.3%
2.1 2.25 3.78 × 10−6 17.2% 12.2%

Figure 13. Comparison of the wicks in terms of (a) mass measurement and (b) the permeability/effective radius ratio.
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Table 5. Measured wick parameters.

Sample
ID

A
(kg2 s−1) × 10−9

(ωm−t)A
(kg2 s−1) × 10−12

(ω∆to )A
(kg2 s−1)× 10−12

B
(kg s−1) × 10−6

(ωm−t)B
(kg s−1) × 10−9

(ω∆to )B
(kg s−1) × 10−8

Porosity, ε (–)

ωε (−)h–t XCT

Wick 1 1.92 3.04 (0.16%) 40.8 (2.12%) 3.37 7.65 (0.23%) 9.55 (2.12%) 0.59 0.62 0.014
Wick 2 0.15 0.72 (0.49%) 3.21 (2.15%) 0.42 5.60 (1.31%) 2.11 (4.94%) 0.58 0.61 0.019
Wick 3 0.229 2.10 (0.91%) 7.94 (3.46%) 2.22 22.4 (1.01%) 8.19 (3.69%) 0.61 0.59 0.041

Table 6. Capillary performance parameters of the tested commercial wick samples.

Sample ID K (µm2) ωK (%) Reff (µm) ωReff (%) K/Reff (µm) ωK/Reff (%)

Wick 1 48.03 3.37 63.4 5.9 0.757 6.81
Wick 2 16.14 5.48 38.26 7.84 0.4217 9.57
Wick 3 123.24 10.97 92.53 24.53 1.33 26.8

Wick 1, for example, shows the highest wicking capacity due
its larger width and thickness (see table 2).

Them–tmethod (discussed in section 4.1) was then applied
for each mROR curve to extract the wick parameters A and B,
which are given in table 5. This table also includes the porosity
measurement results using the m–t–h–t method (discussed in
section 3.4). Also shown are the measured porosities obtained
using the XCTmeasurements technique; these show sufficient
agreement to verify the accuracy of the straightforward m–t–
h–t method. As such, the m–t–h–t measurement for porosity
was used to exemplify that the proposed facility can be used as
an all-in-one measurement device for porosity, permeability,
and effective pore radius.

The uncertainties listed in table 5 were predicted by
propagating the mass uncertainty (±0.0012 g) and the time
delay error, ∆t0, through the fitting algorithm, as explained
in section 3.6. The uncertainty in both parameters (A and B)
resulting from the scale error, (ωm−t), is not significant com-
pared with the compounded error originating from the delay
time (ω∆t0). This is due to the high accuracy of the ana-
lytical balance used and the use of the m–t method which
demonstrates low sensitivity to random noise in the data (see
section 4.1).

Table 6 shows the key wick property and uncertainty res-
ults for each commercial wick tested. Figure 13(b) also lists
and plots the ratio K/reff because it is a more physical assess-
ment of the wick capillary performance; this is because it is
proportional to themaximum capillary pumping power of con-
ventional heat pipes [31]. It can be noted that much larger
uncertainty was determined forWick 3; this is due primarily to
the relative non-uniformity wick cross-section observed in this
wick (see figure 2). This wick also produces the highest K/reff,
followed by Wick 1 and Wick 2, in turn. This illustrates that,
despite similar porosity, sintered copper wicks can perform
quite differently, depending on internal morphology. This of
course is a function of the wick fabrication process including,
but not limited to, powder size and sintering temperature and
pressure. Notably, despite having the highest effective pore
radius, Wick 3 has a disproportionately higher permeability
compared with the other two, thus making it a higher perform-
ance wick.

5. Conclusion

This paper presents a new mROR test facility and ana-
lysis method for measuring wick porosity, permeability, and
effective pore radius. The key findings of this work are as
follows:

• The Lucas–Washburn, dm/dt, and t–mmethods of parameter
estimation are inadequate and the m–t method is suggested
as the most appropriate analysis model for extracting wick
properties from experimental mROR data.

• A robust uncertainty analysis has been developed which
propagates experimental error to the extent that the error
of measured permeability and effective pore radius can be
estimated; to the best of our knowledge, this is a first in this
field of measurement.

• The depth to which wicks are immersed in the liquid has
been shown to cause non-negligible error on the measured
wick parameters, and a method to ensure zero immersion
depth is detailed and implemented.

• Three commercial sintered copper wicks from different flat
heat pipe manufacturers were tested. The results show that
the quality of the wick can influence the estimated error on
the measured wick parameters, particularly if the geometry
is not uniform.

• Of the three commercial wicks tested, one outperformed the
other two, illustrating that not only can the current test facil-
ity confidently quantify relevant wick parameters to differ-
entiate between seemingly similar wicks, but the internal
structure and morphology of sintered copper wicks is cru-
cial for performance in heat pipe applications.
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