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Spatial-temporal modeling of initial COVID-19 diffusion: The cases of the 
Chinese Mainland and Conterminous United States
Daniel Griffith b and Bin Li a

aDepartment of Geography & Environmental Studies, Central Michigan University, Mount Pleasant, Michigan, United States; bSchool of 
Economic, Political and Policy Sciences, The University of Texas at Dallas, Richardson, Texas, United States

ABSTRACT
COVID-19 outbreaks in China in late December 2019, then in the United States (US) in early 
2020. In the initial wave of diffusion, the virus respectively took 14 and 33 days to spread across 
the provinces/states in the Chinese mainland and the coterminous US, during which there are 
43% and 70% zero entries in the space-time series for China and US respectively, indicating 
a zero-inflated count process. A logistic growth curve as a function of the number of days since 
the first case appeared in each of these countries accurately portrays the national aggregate 
per capita rates of infection for both. This paper presents two space-time model specifications, 
one based upon the generalized linear mixed model, and the other upon Moran eigenvector 
space-time filtering, to describe the spread of COVID-19 in the initial 19 and 58 days across the 
Chinese mainland and the coterminous US, respectively. Results from these case studies show 
both models shed new light on the role of spatial structures in COVID-19 diffusion, models that 
can forecast new cases in subsequent days. A principal finding is that describing the spatio- 
temporal diffusion of COVID-19 benefits from including a hierarchical structural component to 
supplement the commonly employed contagion component.
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1. Introduction

Since the COVID-19 outbreaks in January 2020, 
researchers have rushed to understand the first-wave 
space-time dynamic of the disease, and to assess the 
effects of containment measurements. Classical analy
tical and numerical models in epidemiology were 
employed. Leung et al. (2020), for example, estimated 
the instantaneous reproduction number and the con
firmed case-fatality risk of COVID-19 in major cities 
and provinces in China, followed by employing 
a Susceptible-Infectious-Recovered (SIR) model to 
assess the potential effects of relaxing containment 
measures after the first wave of infection. Fanelli and 
Piazza (2020) used SIR to conduct a similar analysis 
across China, Italy, and France. Both Danon et al. 
(2020) and Peixoto et al. (2020) adopted metapopula
tion models to describe and predict the spread of the 
disease from regions to regions across England and 
Wales, and Brazilian states of São Paulo and Rio de 
Janeiro. Meanwhile, spatial statistical models also were 
applied to understand the disease space-time 
dynamics. For example, Guliyev (2020) employed 
a spatial panel data model to tackle the issue of con
tagion diffusion within the context of China, identify
ing spatial effects pertaining to not only the spread of 
cases, but also deaths and recoveries. Giuliani et al. 
(2020) developed an endemic-epidemic multivariate 
time-series mixed-effects GLM for areal counts of the 

COVID-19 cases to describe and predict the space- 
time distribution of the disease across Italy. Briz- 
Redón and Serrano-Aroca (2020) adopted a Bayesian 
approach to analyze the effect of temperature on the 
accumulated COVID-19 cases, finding no evidence of 
associations between warmer weather and reduction 
of cases. These state-of-the-art modeling efforts con
tributed to our understanding of the space-time 
dynamics of the disease. They are, however, largely 
focused on contagion diffusion of the disease. 
Hierarchical diffusion, another dimension of disease 
dynamics, has not been explicitly addressed in these 
models.

Spatial diffusion theory maintains that disease dif
fusion almost always follows two proliferation path
ways: contagion, spread channeled by contiguous 
spatial autocorrelation; and, hierarchical, spread 
jumping between distant places channeled by an 
ordered sequence of places, frequently an urban sys
tem (Hägerstrand 1953; Gould 1969; Cliff et al. 1981; 
Reyes et al. 2013). An omission of the hierarchical 
dimension is clearly a deficit, which presents an 
opportunity for enhancing the current modeling 
efforts and gaining better understanding of the 
COVID-19 space-time dynamics. Achieved improve
ment with this expanded conceptualization can be 
further assessed by setting the modeling context in 
two countries comparable in size, namely China, 
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where early outbreaks occurred, and the United States 
(US), where the disease was rapidly spread across the 
country after its first appearance.

Therefore, the objective of the paper is two-fold: (1) to 
present a spatial analysis of the initial spread of COVID- 
19 across the Chinese mainland as well as across the 
coterminous US in terms of both contagion and hier
archical diffusion; and, (2) to compare the modeling 
results for the two countries. The core approach is to 
represent the spatio-temporal dynamics of COVID-19 
cases with a Generalized Linear Mixed Model (GLMM), 
where either Moran Eigenvector Spatial Filtering (MESF) 
or Moran Eigenvector Spatial Temporal Filtering 
(MESTF) represents the random effects (Griffith, Chun, 
and Li 2019) included in a model specification. This 
semi-parametric approach has the advantage of concep
tual clarity as spatial-temporal structural information can 
be directly incorporated in a GLMM without substantial 
alternation of the estimation algorithm.

In the subsequent sections, we present details about 
the specifications of two GLMM models, one with MESF 
and another with MESTF. The methodology section also 
presents model estimation and workflows as well as 
descriptions of the datasets, including the constructions 
of the hierarchical spatial weights matrices for both 
China and the US. We then report estimation results 
for the spatio-temporal diffusions across the two respec
tive countries with two GLMM model specifications. The 
conclusion section discusses findings from this project as 
well as enumerates future research agenda items.

2. Methodology

The spatial statistical methodology of interest is twofold: 
(1) Generalized Linear Mixed Modeling (GLMM), which 
includes a Random Effects (RE) term; and, (2) Moran 
Eigenvector Space-Time Filtering (MESTF) coupled with 
a RE term. The time series part of a space-time series for 
each location furnishes repeated measures for estimating 
each time-invariant RE term in the two analyses sum
marized in this paper. For the Chinese mainland, the 
individual location-specific RE term values are indistin
guishable from their Fixed Effects (FE) term counter
parts, except for Xizang Autonomous Region, whose 
confidence intervals for both values include the other 
value. For the conterminous US, all 49 sets of values are 
indistinguishable. Consequently, especially after consid
ering arguments in Frondel and Vance (2010), RE spe
cifications were adopted for this paper.

2.1 Modeling Considerations

Moran Eigenvector Spatial Filtering (MESF) is one 
of the major methodological approaches to account
ing for spatial structural information in regression 
modeling (Giuliani et al. 2020; Griffith, Chun, and 
Li 2019). Instead of estimating parameters based 

upon the auto-specified modified likelihood func
tions of spatial variables, MESF selects a subset of 
eigenvectors from the doubly centered Spatial 
Weights Matrix (SWM) of a given geographic 
landscape (partitioning or configuration) as covari
ates in conventional non-spatial regression models 
to filter spatial autocorrelation out of regression 
residuals; this filtering transfers the spatial effects 
to the intercept term, and renders residuals that 
mimic spatially independent ones. The resulting 
linear combination of the statistically significant 
eigenvectors forms an Eigenvector Spatial Filter 
(ESF) that accounts for spatial information in the 
model.

The mathematical foundation of MESF is matrix 
eigen-decomposition, or spectral decomposition, of 
a SWM, which decomposes any diagonalizable 
matrix into its eigenvalues and eigenvectors. 
In spatial modeling, an n� n binary SWM can be 
represented as the sum of n matrices, 
λ1E1E� 1

1 þ λ2E2E� 1
2 þ . . .þ λnEnE� 1

n , where λj 

denotes the jth eigenvalue, and Ej is the correspond
ing n� 1 eigenvector (Strang 2009). Researchers 
found that the domain of the Moran Coefficient 
(MC), the most widely adopted measurement of 
spatial autocorrelation, is bounded by the minimum 
and maximum eigenvalues of the SWM, with the n 
eigenvectors forming distinct, unique orthogonal 
and uncorrelated map patterns, resulting in 
a sequence of MC values (de Jong et al. 1984; 
Tiefelsdorf and Boots 1995; Griffith 1996). An 
observed distribution of a spatial variable Y , there
fore, can be considered to be a function of selected 
eigenvectors of its SWM; i.e. Y ¼ f X;Eð Þ þ ε, where 
X denotes a set of covariates, E is a matrix of n� K 
eigenvectors, and ε denotes the random errors. The 
linear combination of these eigenvectors constitutes 
an ESF, which is the composite term accounting for 
residual spatial autocorrelation. This MESF 
approach, also referred to in terms of Moran 
Eigenvector Maps (MEMs) in numerical ecology 
(Legendre and Legendre 2012), has been successfully 
applied in regression modeling of a wide range of 
spatial random variables (Griffith 2002, 2004). This 
methodology can be extended to space-time model
ing, where eigenvectors from the space-time weights 
matrix account for spatio-temporal structural infor
mation, entering into a model as components in 
either fixed or random effects specifications 
(Murakami and Griffith 2015).

Estimating an ESF-based regression model typically 
involves the following steps:

● Constructing a spatial, or spatio-temporal, 
weights matrix.

● Doubly centering the weights matrix, and then 
calculating its eigenvalues and eigenvectors.
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● Selecting relevant eigenvectors using step-wise 
regression or other methods of variable selection.

● Estimating the posited regression model with 
selected eigenvectors included as covariates.

When describing the diffusion of West Nile Virus 
(WNV) across the US, Griffith (2005) compares six 
different spatial statistical model specifications. One 
cardinal specification is Gaussian in nature (i.e. it 
applies normal curve statistical theory), requiring 
a logarithmic Box-Cox transformation, which is inap
propriate for COVID-19 because of the excessive num
ber of zero cases occurring during the initial 19 days of 
its diffusion across the Chinese mainland studied here. 
A suitable Generalized Linear Model (GLM) for 
describing WNV diffusion was binomial regression, 
because the response variable was deaths per number 
of cases. In contrast, a suitable GLM here for describing 
COVID-19 diffusion is Poisson regression, because the 
response variable is case counts divided by the 2010 
national census population counts – which approxi
mate but do not exactly equal the actual 2020 popula
tion counts (whose logarithmic version is a Poisson 
regression offset variable) – converting the response 
variable into a rate per 100,000 people, hence adjusting 
for size effects. Exploratory spatial data analysis reveals 
that the negative binomial probability model (as an 
equivalent specification for a Poisson random variable 
with a gamma distributed mean to account for excess 
Poisson variation) fails to furnish a satisfactory alter
native for COVID-19 cases, most likely because an 
excessive number of zeroes occurs during the first 
14 days of diffusion, which results in overdispersion 
and hence necessitates quasi-likelihood estimation of 
the parameters. Consequently, we specify a zero- 
inflated Poisson probability model specification under
lying the rates random variable Y for the analysis sum
marized in this paper, which may be written as follows: 

Pr Y ¼ 0ð Þ ¼ π þ 1 � πð Þe� μμ0= 0!ð Þ

¼ π þ 1 � πð Þe� μ; and Pr Y ¼ c> 0ð Þ

¼ 1 � πð Þe� μμc= c!ð Þ ; for positive count c (1) 

where Pr denotes probability, μ denotes the mean 
COVID-19 rate, and π is the Bernoulli random 
variable representing the probability of an excess 
zero occurring. Theoretically, this mixture formula
tion requires the plausibility that some locations 
are ineligible for a nonzero count; however, this 
condition technically holds because COVID-19 ori
ginally did not appear in all provinces simulta
neously, and once a zero-cases day ended for 
a location, it could not become a non-zero-cases 
day. Because the diffusion of COVID-19 displays 
positive spatial autocorrelation, a conventional 
auto-Poisson model specification, which can 
accommodate only negative spatial autocorrelation, 

is not suitable here. Substituting its modified ver
sion devised by Kaiser and Cressie (1997), which 
can accommodate positive spatial autocorrelation, 
is unappealing because of its property that the sum 
of all possible probabilities is not one (a funda
mental axiom of probability theory).

As an alternative, Griffith (2005) evaluates a RE 
specification, 

LNðμitÞ ¼ αþ βdayLN μday

� �
þ ZiβZi þ LNðPiÞ;

¼ αþ βdayLN μday

� �
þ SSREi þ SUREi

þ LN Pið Þ;

i ¼ 1; 2; . . . ; n; t ¼ 1; 2; . . . ;T (2) 

where μit denotes the number of new disease cases in 
areal unit i (e.g. province, state) at time t, α denotes 
the global intercept term, βday denotes the regression 
coefficient for the country-wide national time trend 
μday [the expected value of βday is 1; Pesaran (2006) 
suggests that a model specification should contain 
this term, at least when n is large]; ZiβZi represents 
the Random Effects (RE) for region i, which is 
decomposed into two components, namely Spatially 
Structure Random Effects (SSRE) and Spatially 
Unstructured Random Effects (SURE); LN is the 
logarithmic operator, Pi is the population counts 
for region i, and LN Pið Þ serves as an offset variable. 
The RE term also is a key component of the US 
IHME model specification (IHME COVID-19 
Health Service Utilization Forecasting Team 2020), 
explicitly in terms of Bayesian analysis. The RE spe
cification appears to be the correct one for estimat
ing the zero-inflated Poisson regression model, once 
it includes spatial and temporal information. This 
RE conceptualization maintains that regression resi
duals are the sum of two components, a systematic 
part that arises from, for example, missing/omitted 
covariates, plus a stochastic part that arises from the 
independent and identically distributed (iid) regres
sion errors assumption. A standard regression ana
lysis cannot separate these two components because 
additional information is necessary to do so. 
Calculating a spatial autocorrelation index, such as 
the Moran Coefficient, for regression residuals 
brings a Spatial Weights Matrix (SWM) Cs to an 
analysis as additional information based upon areal 
unit contiguity (re contagion diffusion), allowing 
identification of at least a portion of the latent sys
tematic part as spatial autocorrelation in standard 
regression residuals. A Bayesian analysis, such as 
the one presented by Griffith (2005) for WNV diffu
sion, employs prior distributions for parameters as 
well as a SWM Cs as additional information. The 
outcome is a systematic segment partitioned into 
two sub-segments, namely, a Spatially Structured 
RE (SSRE), which relates to SWMs and represents 
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contagion diffusion mechanisms, and a Spatially 
Unstructured RE (SURE), which essentially is geo
graphically random in nature, and hence void of 
spatial autocorrelation, but furnishes clues about 
aspatial omitted variables. A SURE term can consti
tute a response variable in a linear regression with 
substantive attribute covariates, such as demo
graphic, economic, and health features of 
a population. A conventional SURE term represents 
not only aspatial factors that are in play, but also 
overlooked disconnected geographic factors, such as 
hierarchical linkages (i.e. non-contiguous geographic 
ties) when a specification fails to include the 
hierarchical SWM, CH . A frequentist analysis 
achieves this same SSRE-SURE partitioning by 
including repeated measures, which for COVID-19 
are the daily counts of cases time series for 
a location, coupled with a SWM Cs as additional 
information.

Partitioning a RE term into its SSRE and SURE 
components can be achieved with Moran Eigenvector 
Spatial Filtering (MESF) techniques outlined at the 
beginning of the section. Standard MESF supplies 
a tool for accomplishing this partitioning with eigenvec
tors extracted from the doubly-centered SWM, 

I � 11T=n
� �

Cs I � 11T=n
� �

, where n is the number 
of areal units (i.e. 31 for China, and 49 for the US, here), 
I is the identity matrix, superscript T denotes the matrix 
transpose operation, and 1 is a n-by-1 vector of ones. 
Griffith (2012) extends MESF to space-time data, denot
ing it as MESTF. Because disease diffusion occurs very 
quickly, the MESTF formulation employed here utilizes 
the doubly-centered contemporaneous rather than the 
lagged space-time structure matrix specification I �
11T= nTð Þ IT � Cs þ CT � Inð Þ� ½I � 11T=nT; where 
subscript T denotes time and normal glyph T denotes 
the number of points in time (e.g. days for COVID-19), 
T-by-T matrix CT denotes time-series structure (i.e. 
ones in the upper- and lower-off-diagonal cells, and 
zeroes elsewhere), and � denotes the Kronecker pro
duct matrix operation. A subset of the eigenvectors of 
this space-time weights matrix captures the spatial and 
temporal autocorrelation in a space-time series. In order 
to assess hierarchical effects, eigenvectors extracted 
from the doubly-centered hierarchical SWM 

I � 11T=n
� �

CH I � 11T=n
� �

supplement those 
already included in a RE regression analysis from matrix 

I � 11T=n
� �

Cs I � 11T=n
� �

, whereas eigenvectors 
extracted from the doubly-centered matrix 
I � 11T= nTð Þ IT � CH þ CT � Inð Þ� ½I � 11T= nTð Þ
� �

supplement those already included in a space-time 
regression analysis extracted from matrix 
I � 11T= nTð Þ IT � Cs þ CT � Inð Þ� ½I � 11T= nTð Þ
� �

.
Subsequently, there are two general models of the 

following forms, one based on MESF and another on 
MESTF: 

LN μit
� �

¼ αþ βdayLN μday

� �
þ
XK

k¼1
esikβsk

þ
XH

h¼1
eHihβHh þ SUREi þ LN Pið Þ; (3) 

LN μit
� �

¼ αþ βdayLN μday

� �
þ
XK

k¼1
esitkβsk

þ
XH

h¼1
eHithβHh þ SUREi þ LN Pið Þ; (4) 

where ð
PK

k¼1 esikβskÞ and 
PH

h¼1 eHihβHh
� �

are the spatial 
ESF (MESF), with esik denoting the ith element of the kth 
eigenvector selected from the eigenvectors of matrix 

I � 11T=n
� �

Cs I � 11T=n
� �

, eHih denoting the ith 
element of the hth eigenvector selected from the eigen
vectors of matrix I � 11T=n

� �
CH I � 11T=n
� �

; 
PK

k¼1 esitkβsk and 
PH

h¼1 eHithβHh are the spatial- 
temporal ESF (MESTF), differentiating between them 
with the subscript t, representing time; β �ð Þ are the 
respective coefficients. These linear combinations of 
eigenvectors form the SSRE terms.

Both specifications involve a national non-linear 
trend line coupled with eigenvectors and an aspatially 
structured error. The national time trend, denoted by 
μday, describes the epidemiological curve for a country, 
and is constant across all n areal units for a given point in 
time, t. It describes the initial exponentially increasing 
number of cases that a decline in number of cases fol
lows, and reflects mitigation impacts implemented to 
flatten it. The trajectory of this curve varies over time in 
a way that accounts for a portion of the temporal auto
correlation contained in a space-time disease diffusion 
dataset. In the MESF specification (Equation 3), the SSRE 
term is constant over time (i.e. measured in days here) 
for each areal unit, varying across these areal units, con
stituting part of a time-invariant common factor 
accounting for temporal autocorrelation. This variation 
across areal units accounts for spatial and hierarchical 
autocorrelation, relating to relevant omitted variables 
whose inclusions would account for this autocorrelation. 
The SURE term is constant over time for each areal unit, 
is stochastic in nature, varies across areal units, and 
relates to a time-invariant common factor accounting 
for temporal autocorrelation by omitted variables with 
no geographic manifestations. Meanwhile, the MESTF 
specification (Equation (4)) relaxes the assumption of 
a time invariant common factor, allowing space-time 
rather than solely spatial variation in the structure term.

2.2 Model specifications and estimations

Estimation of Equations (3) and (4) parameters 
involves sequential steps. In both cases, the first step 
is to estimate the national trend curve, μday, from an 
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aggregate time series of new cases; this estimation 
involves T observations (Ma 2020). The resulting 
T predicted values constitute a covariate for a space- 
time dataset. A zero-inflated Poisson model formu
lated with only this covariate, denoted by M-1, furn
ished a very simple and incomplete description of 
a space-time series: 

LN μit
� �

¼ αþ βdayLN μday

� �
þ LN Pið Þ þ REi; (5) 

which captures no geographic variation.
The next step for Equation (3) is to decompose the 

RE term, 

REi ¼
XK

k¼1
esikβsk þ

XH

h¼1
eHihβHh þ SUREi 

using the space-time dataset combined with a GLMM 
approach. As a posited normal random variable, the 
RE term has two parameters, its mean, which should 
be zero, and its variance. GLMM simultaneously esti
mates the residual {LN μ̂it

� �
� [α̂þ β̂dayLNðμ̂dayÞ]} 

while partitioning it into (RE + ε), where ε is 
a conventional iid error term, exploiting the repeated 
measures nature of a space-time series. Next, the RE 
term becomes a response variable in a stepwise linear 
regression specification, with the set of relevant eigen
vectors from doubly-centered SWMs Cs and CH as the 
candidate covariates to construct the ESF [the term 
PK

k¼1 esikβsk þ
PH

h¼1 eHihβHh in Equation (3)]. The 
linear regression residuals in each of the two estima
tions are the SURE. Because diffusion displays positive 
spatial autocorrelation, the relevant candidate eigen
vectors are those for which MCj/MC1 ≥ 0.25, where 
MCj is the jth eigenvalue of a doubly-centered SWM, 
and the threshold value of 0.25 implies that autocor
relation accounts for at least 5% of the jth eigenvec
tor’s variance. In parallel with M-1 (Equation (5)), we 
denote this contagions-hierarchical diffusion model as 
M-2 (Equation (3)) and refer to it as a simple space- 
time RE specification.

The space-time model expressed by Equation (4) is 
estimated in similar ways, with the eigenvector spatial 

filters constructed from the doubly centered contem
poraneous space-time weights matrices (contagions 
and hierarchical cases). Equation (4) is denoted as 
M-3, in which contagions and hierarchical structures 
are assumed to be time variant. To model the situa
tions where some structures are time variant and 
others are not, ESTFs are treated as fixed effects, 
resulting in the following comprehensive specification: 

LN μit
� �

¼ αþ βdayLN μday

� �

þ
XK

k¼1
esitkβsk þ

XH

h¼1
eHithβHh

 !

þ REi

þ LN Pið Þ;

(6) 

which is denoted as M-4 and referred to as a Moran 
Eigenvector Space Time Filter (MESTF)-RE model in 
the ensuing reporting sections; accordingly, 
RE ¼ SSREESTF þ SUREESTF . In order to evaluate the 
effects of hierarchical diffusions and the efficacy of the 
spatial filters, we first estimated models with the hier
archical or the SURE component omitted. Table 1 
provides a reference for the models estimated and 
described in this paper.

2.3 Hierarchical regional structures

Central Place Theory (Lösch 1954; Christaller 1966) 
presents conceptualizations articulating urban hierar
chies in a system of cities. Yeates and Garner (1980, 
68) furnish one of the earliest meaningful comprehen
sive urban hierarchy articulations at a continental 
scale, namely, North America. They built their struc
ture upon work by, among others, Philbrick (1957) 
and Borchert (1967, 1972), who emphasize popula
tion, migration, transportation networks/flows, and 
commuting. Neal (2011) documents an importance 
shift from population size to such geographic features 
as transportation networks in determining the US 
urban hierarchy during the last century. Population 
density and commuting flows enter as factors because 
the formulation of almost all urban area definitions 

Table 1. Models estimated. The subscripts s and H denote contagion and hierarchical diffusions, respectively. Without subscripts, 
SSRE and SURE represent spatial-only random effects.

Models μday SURE

SSRE SUREESTF SSREESTF

Equations NotesESFs ESFH ESTFs ESTFH

M-1 X 5 Non-spatial
M-1a X X X Contagion + hierarchical
M-1b X X Contagion only
M-2 X X X X 3 SSRE+SURE
M-2a X X X Contagion only
M-2b X X X SSRE
M-2 c X X Contagion only
M-3 X X X X 4 SSREESTF+SUREESTF

M-3a X X Contagion only
M-4 X X X X 6 ESTF+SSREESTF+SUREESTF

M-4a X X X ESTF+SSREESTF
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include them. Furthermore, Hansen (1975), among 
others, emphasizes the importance of commuting 
fields—other fields also play a role (see Phillips 
[1974])—when articulating an urban hierarchy. This 
is the background literature supplying a foundation 
for those variables considered when establishing urban 
hierarchies in this paper. Clearly, numerous alterna
tive hierarchy articulations are possible, given the sub
jective nature of the construction process, implying 
a need to more thoroughly study this topic. Here, the 
included hierarchies rely heavily upon the more recent 
country-specific cited articles and supplemental infor
mation reflected in the cited data sources, updating 
their national urban hierarchy predecessors.

The hierarchical model for China’s level-I admin
istrative regions is based upon a collection of pub
lished research about the hierarchical structures of 
the Chinese urban system (Gu and Pang 2008; Song, 
Li, and Xiu 2008; Xue 2008; Leng et al. 2011; Wang 
and Jing 2017; Han, Cao, and Liu 2018; Xiong and 
Poston 2020). Three tiers were identified. Tier 
I includes two direct-administered municipalities, 
Beijing, the national capital, and Shanghai, the largest 
economic center in the country, and Guangdong 
Province, which has two of this country’s four Tier 
I cities, Guangzhou and Shenzhen. Although the top 
position of Beijing and Shanghai has long been estab
lished, the rise of Guangdong to national prominence 
started after the economic reform in the early 1980s 
coupled with establishment of the Special Economic 
Zones, with Shenzhen becoming the nation’s top high 
tech powerhouse and the largest migrant city. As the 
central city of the Pearl River Delta, one of the most 
advanced economic regions in the country, 
Guangzhou also has become one of the three “strong 
centers” in China’s urban hierarchy, quantified by 
railway and air traffic flows (Wang and Jing 2017), 
and a Tier I city by a synthesized gravity model that 
takes into account socioeconomic factors and func
tional distances (Han, Cao, and Liu 2018). A sample of 
inter-regional population flows in January 2020 pub
lished by Baidu also confirms Guangdong as a top 
origin and destination city in the country (qianxi. 
baidu.com).

Although identification of the top tier regions was 
straight-forward, choices for the second-tier regions 
were less clear cut. In Han’s synthesized gravity model, 
Nanjing, Wuhan, and Chongqing were identified as 
Tier 1 cities, along with Beijing, Shanghai, and 
Guangzhou (Han, Cao, and Liu 2018). Wang and 
Jing also put Nanjing and Wuhan in the second tier, 
but they chose Chengdu instead of Chongqing as the 
center of southwest China (2017). As Chongqing 
became one of the four direct-administrated munici
palities, moving it to the second tier is reasonable. For 
the northwest part of the country, Gansu Province, 
also called the Hexi (West of the Yellow River) 

Corridor, connects the vast territories in northwestern 
China with the rest of the country. Consequently, 
the second tier includes the following level-1 admin
istrative regions: Jiangsu Province (Nanjing), Hebei 
Province (Wuhan), Chongqing, and Gansu Province.

Tier 3 regions are first- or second-order neighbors 
of either Tier 1 or Tier 2 regions. Hunan and 
Shandong enjoy multiple connections due to their 
locations relative to the Tier 1 and 2 regions. We also 
made the Tier 1 regions interconnected because they 
experience considerable lateral hierarchy interactions. 
Figure 1 depicts the resulting hierarchical structure of 
level 1 administrative regions in Chinese mainland.

Paralleling the articulated China hierarchy, the US 
hierarchical model reflects both past North American 
urban hierarchy articulations and a collection of more 
contemporary published research about the hierarch
ical structures of the US urban system (Yeates and 
Garner 1980; Dobis et al. 2015; Nelson and Rae 
2016). Five tiers were identified. Tier 1 includes only 
New York State, which houses world-class New York 
City (NYC), the largest economic center in the coun
try; although COVID-19 first appear in the western 
part of the US, NYC was the principal gateway for its 
entry into (particularly from Europe) and diffusion 
throughout this country. NYC emerged as the national 
urban leader around 1805, and has maintained this 
hierarchical position ever since.1 Tier 2 cities covering 
the remaining parts of the US are Atlanta, Chicago, 
Dallas-Ft. Worth, Denver, Houston, Los Angeles, 
Miami (because of the remoteness of south FL), San 
Francisco, Washington, DC (the national capital), and 
Seattle; these metropolitan areas collectively place CA 
(reinforced by Riverside, San Jose, and San Diego), 
CO, DC, FL (reinforced by Jacksonville, Orlando, 
and Tampa), GA, IL, TX (reinforced by Austin and 
San Antonio), and WA into the Tier 2 level. 
Historically, this hierarchical level populated as this 
set of cities ascended in the US urban system, displa
cing other cities, such as Baltimore, Boston, and 
Philadelphia, urban places initially thriving during 
the earlier history of this country. These three cities, 
together with Cleveland, Indianapolis, Kansas City, 
Minneapolis, New Orleans, Phoenix, Pittsburgh, 
Portland, and St. Louis, jointly insert the states of 
AZ, CT (because of its relative location to Boston 
and NYC), IN, KS, LA, MA, MD, MN, MO, OH 
(reinforced by Cincinnati and Columbus), OR, PA, 
and VA (because of its relative location to DC) into 
Tier 3. Detroit began its urban system ascent around 
1840, peaking in rank in the 1930s, and precipitously 
beginning its urban system descent in approximately 
1980; Detroit’s current population is approximately 
the same as its 1915 population, and roughly a third 
of its peak 1950 population. Accordingly, it places MI 
in Tier 4, with AL (Birmingham), AR (Little Rock), IA 
(Des Moines), MS (Jackson), NC (Charlotte and 
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Raleigh), NE (Omaha), OK (Oklahoma City), TN 
(Nashville and Memphis), WI (Milwaukee), and UT 
(Salt Lake City). Tier 5 comprises the remaining 16 
states. Membership placement in this five-tier hierar
chy reflects both national geographic influence cover
age and urban system importance, and to a large 
degree both heralds and foreshadows the 2020 US 
census metropolitan area population.2 This articula
tion also was informed by the geographic distributions 
of highway flows,3 air traffic flows,4 and population 
density.5 Figure 2 illustrates the state-level hierarchical 
system of the coterminous US.

2.4 Datasets

Analyses summarized in this section employed two pub
licly available daily COVID-19 datasets, one for China,6 

and the other for the US.7 Supplemental datasets include 
population census and a network articulation represent
ing the hierarchical structure at the provincial/state level 
in the respective countries.

2.4.1 China Mainland Datasets
The daily counts of COVID-19 cases by province are 
available through a public repository at Harvard 

Figure 1. A three-tier regional hierarchical structure of Chinese mainland. Darker gray indicates a higher level in the hierarchy. 
Numbers on the diagram correspond to the region names on the map.
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University. These daily data begin with the initial 
reporting of COVID-19 in Wuhan (Hubei Province) 
on 15 January 2020. The virus took 14 days to spread 
to all 31 mainland provinces; expanding this time 
horizon to 19 days is the dynamic geographic land
scape of interest explored in this paper, through ana
lyses of both contagion and hierarchical diffusion. Of 
these early 19-days-by-31-locations (i.e. 589 day- 
locations), 187 have zero cases.

A second employed dataset, retrieved from the 
National Bureau of Statistics of China 2010 population 
census web site,8 contains 2010 population size, area, 
demographic characteristics, and other provincial attri
butes. Although these counts and measures do not con
stitute the exact China population exposed (e.g. the 
number of people at risk), their provincial magnitudes 
furnish current factual but unknown attribute measures 
(closely paralleling the type of quantification utilized by 
Danon et al. 2020). Population counts enabled the 

calculation of cases of COVID-19 per 100,000 people, 
the rates treated in this paper.

2.4.2 US Datasets
The US COVID-19 dataset comprises the daily counts 
of cases by states [plus the District of Columbia (DC) 
and the four US territories (i.e. Guam, Puerto Rico, US 
Virgin Islands, and the Northern Mariana Islands) 
that the Johns Hopkins U. Center for Systems 
Science and Engineering (CSSE) compiles from state 
health department reports and makes available 
through a public repository. These daily data begin 
with the original appearance of COVID-19 in 
Washington State (WA) on 21 January 2020. This 
disease took 33 days to spread to all 48 coterminous 
states and the DC, which forms the active geographic 
landscape of interest in the analysis summarized in 
this section. The contagion and hierarchical diffusion 
mechanisms uncovered for the US corroborate those 

Figure 2. A five-tier hierarchy of coterminous US states and the DC; standard US Postal Service abbreviations denote the 
states and the national capital. Lines show connections between regions. Darker gray polygon fills represent higher levels 
in the hierarchy.
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already identified for China. Of the early 33-days-by 
-49-locations (i.e. 1,617 day-locations), 1131 have zero 
cases.

A second dataset, a measure of population size, 
contains vintage 2019 annual state population esti
mates – the latest ones available – retrieved from the 
US Census Bureau.9 Although these totals do not 
constitute the exact US population at risk, their state 
magnitudes should be much closer to current factual 
but unknown state populations than the 2010 decen
nial population counts whose use would more closely 
parallel the type of quantification utilized for the pre
ceding China analysis as well as by Danon et al. (2020). 
These population estimates indirectly build upon the 
2010 decennial census counts, and directly build upon 
the 2018 annual estimates, adding births, subtracting 
deaths, and adding net migration (both international 
and domestic) since 1 July 2018. These population 
estimates enabled the calculation of cases of COVID- 
19 per 100,000 people, the rates treated in this paper. 
A county level map portraying the geographic distri
bution of these rates appears on the Johns Hopkins 
U. Coronavirus Resource Center webpage.10

2.4.3 The Spatial Weights Matrices
A contiguity-based SWM and hierarchical SWM were 
constructed for level-1 administrative regions in China 
(provinces, autonomous regions, and direct- 
administered municipalities, excluding Taiwan; a total 
of 31 regions) and the coterminous US (49 States, exclud
ing Hawaii and Alaska). A rook definition of adjacency 
was used for the binary contiguity-based SWMs, Cs, 
while first order network connectivity serves as the 
bases for the binary hierarchical SWMs, CH . The China 
Cs contains 138 ones; its CH has 72 ones. The US has 220 
ones in its Cs and 102 ones in its CH .

3. Spatio-Temporal Diffusion of COVID-19

This section summarizes the two principal analytical 
space-time descriptions of the initial diffusion of 
COVID-19 across the Chinese mainland and the 
coterminous US during the initial period of 19 
(through 2/3/2020) and 58 (through 4/12/2020) days, 
respectively. The first model is a frequentist RE 
description, involving a time invariant spatially auto
correlated common factor capturing temporal auto
correlation, whereas the second model is a MESTF-RE 
description, involving synthetic space-time covariates, 
augmented with a minor time invariant common fac
tor, accounting for not only contagion but also hier
archical diffusion.

3.1 Diffusion Across the Chinese Mainland

The total the Chinese mainland reported number of 
cases for the time period is 20,388 (caveat: on 1/21/ 
2020, Yunnan Province had its 1st and a single new 
case, whereas on 1/22/2020 it had a new case removed 
(a negative one); both were set to 0); Figure 3a is a time 
series graphic portrayal of the increases in number of 
new cases per 100,000 people during this time horizon 
plus many days beyond it (an epidemiological curve 
[i.e. time series plot] for China’s first 95 days). Because 
the number of cases increases over time with 
a trajectory initially tracking an S-shaped curve 
describing exponential growth, and overall tracking 
a bell-shaped type curve, a logistic transformation of 
a quadratic function of the number of days since the 
first case of COVID-19 appeared in the country is 
a covariate (i.e. the daily average rate is cast as 
a function of time, and entered in its logarithmic 
form as a Poisson regression covariate) of the follow
ing form: 

Figure 3. The COVID-19 pandemic in China. Case rates represent the number of cases per 100,000 people. Left (a): an aggregate 
national time series of rates during the first nearly 100 days, with a superimposed epidemiological curve trend line (solid red 
line); day 28 (2/12/2020) had a roughly 9-fold increase in Hubei Province (which returned to its previous levels in two 
days)―because so many people had symptoms with no easy way to test them, authorities appeared to have changed the way 
COVID-19 was identified. Middle (b): simple space-time RE model (M-2) prediction versus observed case rates for the first 19 days. 
Right (c): MESTF-RE model (M-4) prediction versus observed case rates for the first 19 days. Dashed lines denote 95% prediction, 
and shaded area denotes 95% confidence, intervals around a solid trend line.
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μ̂day ¼
11:7127

1þ e0:5711� 23 0:0404ð Þ� 0:0157 232ð Þ

�
11:7127

1þ e0:5711þ day� 23ð Þ 0:0404ð Þ� 0:0157½ day� 23Þ2ð �

(7) 

This is the equation describing the superimposed non
linear trend line in Figure 3a, the country-wide 
national trend, the curve governments seek to bend. 
The correspondence between Equation (7) and the 
empirical time series scatterplot in Figure 3a yields 
a linear multiple correlation R2 of 0.47; removing the 
two extreme outliers (i.e. days 28 and 29) attributable 
to a definitional change for case reporting increases 
this R2to 0.89. However, in the context of the space- 
time diffusion data, in accounts for less than 4% of the 
spatio-temporal variation (Table 3).

The simple RE zero-inflated Poisson probability 
model fitting exercise first estimates an RE term 
together with an intercept and a coefficient for the 
time covariate number-of-days, given by Equation 
(7), and then decomposes this RE term into a SSRE 
and a SURE component. Consequently, Figure 3b por
trays the scatterplot of predicted versus observed 
values for the combination of contagion and hierarch
ical diffusion effects. Figure 3b has the classical 
V-shaped dispersion of points with increasing rates 
that characterizes a Poisson random variable: because 
the mean and variance are the same, deviations from 
the trend line tend to increase with increasing rates. 
Matrix I � 11T=31

� �
Cs I � 11T=31
� �

has eight, 
whereas matrix I � 11T=31

� �
CH I � 11T=31
� �

has 
six, eigenvectors with positive spatial autocorrelation 
satisfying the condition MCj/MC1 ≥ 0.25. Table 2 
summarizes results for these two cases, revealing that 
a hierarchical structure eigenvector is very prominent, 
and that its contagion spatial structure component, 
which exhibits strong positive spatial autocorrelation 
(Figure 4a), plays a prominent role in the RE term. 
Contagion eigenvectors Es;8 and Es;4, and perhaps Es;3 

in part, jointly try to compensate for omitted hierarch
ical eigenvector EH;6. Results of zero-inflated Poisson 
regression appearing in Table 3 confirm that the addi
tion of a hierarchical diffusion element to the analysis 
merely redistributes statistical explanation and facets 
between the SSRE and SURE terms without impacting 
upon their combined outcome represented by their 

composite RE term alone. The AICc and BIC each 
decrease by a factor of roughly 16 with the addition 
of a SSRE plus SURE term, confirming that autocor
relation plays an important role here. Expansion of the 
SSRE alone to include hierarchical in addition to spa
tial autocorrelation reduces that terms contribution by 
a factor of three, indicating the presence of an impor
tant hierarchical autocorrelation component.

In addition, Table 3 discloses that this space-time 
RE specification suffers from a poor RE term estimate, 
with its mean markedly deviating from zero and its 
frequency distribution noticeably differing from a bell- 
shaped normal curve; supplemental model diagnostic 
outcomes also suggest a lack of conformity to the zero- 
inflated Poisson specification.

The hierarchical component in the MESTF model 
specification does more than merely redistribute 
effects within a limiting composite term like a RE 
(Table 4, βH= 0). Rather, it augments contagion diffu
sion eigenvectors with hierarchical diffusion eigenvec
tors; although the eigenvectors within each of these 
sets are orthogonal and uncorrelated, they do not 
necessarily possess this property across these two 
sets. Because this spatial analysis involves a complete 
space-time series, with nT = 589, the number of eigen
vectors with MCj/MCmax ≥ 0.25 is substantially larger 
than that for the simple space-time RE model (M-2) 
specification: 136 for the spatial autocorrelation com
ponent, of which the stepwise MESTF zero-inflated 

Table 2. Spatial autocorrelation index and linear regression R2 values for selected China RE decompositions.
Contagion diffusion only Contagion plus hierarchical diffusion

linear regression R2 linear regression R2

eigenvector MCj/MCmax SSRE SURE eigenvector MCj/MCmax SSRE SURE

Es,1 1.0000 0.3093 Es,1 1.0000 0.3093
Es,3 0.7040 0.1398 EH,6 0.4926 0.1543
Es,8 0.2771 0.0946 Es,3 0.7040 0.0540
Es,4 0.6734 0.0630
Cumulative 0.7852 0.6066 0.3934 Cumulative 0.5176 0.4823

NOTE: contiguity MC1 = 0.930,24; hierarchical MC1 = 0.992,80.

Table 3. Selected Poisson regression results for the simple 
China space-time RE specification.

feature μday (M-1) μday + SSRE μday + SSRE + SURE (M-2)

spatial autocorrelation only
intercept −2.716 −3.473 −4.043
deviance 28.61 7.11 2.56
pseudo-R2 0.038 0.749 0.965
AICc 65,606 12,149 4,135
BIC 65,619 12.166 4,153
π̂: zero inflation 0.207 0.040 0.020

spatial plus hierarchical autocorrelation
intercept −2.716 −4.043 −4.043
deviance 28.61 2.56 2.56
pseudo- R2 0.038 0.965 0.965
AICc 65,606 4,136 4,135
BIC 65,619 4,153 4,153
π̂: zero inflation 0.207 0.020 0.020

NOTE: the RE = SSRE + SURE arithmetic mean is −1.122, with its Pr(S-W) = 
0.002, where S-W denotes the Shapiro-Wilk normality diagnostic statis
tic; −1.122 − 2.921 = −4.043 The means of SSRE and SURE are 0. 

NOTE: AICc denotes the corrected Akaike Information Criterion; BIC 
denotes the Bayesian Information Criterion.
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Poisson regression selected 34, and 127 for the hier
archical autocorrelation component, of which the 
stepwise regression selected 31 additional vectors (i.e. 
a total of 65), with these selections being simultaneous. 
Figure 3c portrays an outcome from these regressions, 
demonstrating that the MESTF specification shrinks 
the prediction dispersion vis-à-vis the simple space- 
time RE (M-2) specification; Table 4 corroborates this 
contention. These findings imply that inclusion of 
a hierarchical diffusion component in a spatial diffu
sion model shows considerable promise for bolstering 
scientific understanding, prediction, and forecasting 
of COVID-19 diffusion spread.

Figure 5 portrays selected day map patterns of the 
constructed ESTF, which is a linear combination of 
eigenvectors selected from the two respective space- 
time weights matrices. This structural covariate cap
tures a changing role played by the contagion and the 
hierarchical components, shifting from a hierarchically 
dominated mixture for the first day (R2 = 0.810, with 
one contagion and six hierarchical eigenvectors), to 
a purely hierarchical component for the 14th day (R2 

= 0.429, with three hierarchical eigenvectors), back to 
a hierarchically dominated mixture for the 19th day (R2 

= 0.862, with two contagions and four hierarchical 

eigenvectors). This specification outperforms the sim
ple space-time RE model (M-2) specification (Table 4) 
in rendering a description of the COVID-19 diffusion 
that already has taken place (i.e. a retrospective descrip
tion). Including an additional time-invariant RE term 
essentially does little more than replace a number of the 
selected eigenvectors (i.e. 44) with a common factor 
description; this term has both a SSRE and a SURE 
component, but accounts for less than 3% of the space- 
time variance through a redistribution from the ESTF 
term (Table 4), accompanied by noticeable improve
ments in many of its model diagnostics. Both of the 
AICc and BIC decreases corroborate this finding.

Table 4 also reveals that the various specifications 
yield roughly the same slope coefficient for the global 
time covariate. In addition, the bivariate regression 
coefficients, whose theoretical values are 0 for the 
intercept (α) and 1 for the slope coefficient (β), imply 
that the MESTF zero-inflated Poisson specification 
including a hierarchical component renders the closest 
overall correspondence model results. Of note is that, 
based upon exploratory simulation experiments, zero 
inflation appears to induce deviations in the bivariate 
regression coefficients from their respective theoretical 
values.

Figure 4. The contagion-hierarchical diffusion China space-time RE terms; lighter gray denotes relatively small values. Left (a): SSRE 
(MC = 0.757; R2 = 0.518). Left middle (b): SURE (MC = −0.004). Right middle (c): SSREESTF (MC = 0.640; R2 = 0.607). Right (d): 
SUREESTF (MC = −0.048). NOTE: eigenvectors are unique to a multiplicative factor of −1, which sometimes results in artificially 
inverse relationships between maps (e. g. SSRE and SSREESTF). Taiwan is omitted from the model due to data availability.

Table 4. Selected summary statistics for China model parameter estimation results.

Numerical characteristic RE specification (M-2)

MESTF versions

ESTF, βH = 0 (M-3) ESTF (M-3) ESTF + SSREESTF

ESTF + SSREESTF  

+ SUREESTF (M-4)

Scaling factor 1 1/5 1 1
# eigenvectors 2 contagion + 1 hierarchical 47 contagion 56 contagion + 50 hierarchical ESTF: 34 contagion + 31 hierarchical; 

SSREESTF: 4 contagion + 0 hierarchical
Deviance statistic 2.58 5.32 1.54 7.68 1.25
Pseudo-R2 0.965 0.979 0.997 0.988 0.998
AICc 4,135 5,591 2,647 5,112 2,498
BIC 4,153 5,800 3,804 5,398 2,785
π̂: zero inflation 0.019 0.050 0.006 0.032 0.008
α̂ from Y = α + βbY −0.003 −0.010 −0.001 −0.004 −0.000

β̂ from Y = α + βbY 1.034 1.112 1.012 1.075 1.009

β̂day 

(standard error)
0.7383 (0.0076) 0.7752 

(0.0372)
1.1039 (0.0343) 1.0772 

(0.0270)
0.9742 
(0.0249)

NOTE: AICc denotes the corrected Akaike Information Criterion; BIC denotes the Bayesian Information Criterion.
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In part, the specifications in this paper parallel the 
IHME statistical forecasting model (IHME COVID-19 
Health Service Utilization Forecasting Team 2020), 
whose negative critiques emphasize its lack of epide
miological content (for which the RE term substi
tutes). Nevertheless, the specification in this paper 
not only incorporates the SIR/SEIR conceptualization 
(Stehlé et al. 2011), including susceptible (i.e. total 
population), exposure (i.e. contagion and hierarchical 
components), and infectious (i.e. new cases) compart
ments, but also includes a mechanism for mitigation 
impacts, namely the time-varying national aggregate 
mean describing the epidemiological curve. Social dis
tancing, for example, can alter this curve, modifying 
parameter estimates of Equation (7) in order to 
describe a flattened version of it.

SSRE, SURE, and RE (the sum of SSRE and 
SURE) model components represent omitted vari
ables. SSRE relates to contagion and hierarchical 
spatial autocorrelation. As noted previously, con
struction of this geographic structure builds upon 
population density, flows in geographic space, and 
established infrastructure. The amount of living 
space per person is a prominent covariate of the 
simple mixed model SSRE term, accounting for 
more than 40% of its geographic variance 
(Figure 6a). The ratio of non-agricultural to agricul
tural population, a type of urban-rural index, 
accounts for roughly 25% of the simple mixed 
model SURE term (Figure 6b). In combination, as 
a RE term, the male-to-female ratio supplements 
these two covariates, increasing the amalgamated 
geographic variance accounted for by the linear 
combination of the three covariates to nearly 50%. 
The screening of numerous other provincial covari
ates (e.g. age, health status, population density; e.g. 
see Likassa 2020) failed to identify other possible 
omitted variables; this topic merits subsequent 
future research. Because the two MESTF-RE 

components account for such a small proportion of 
space-time variation in the number of new cases, 
they are left as synthetic variates signifying rather 
minor omitted variable effects in that specification.

3.2 Diffusion Across the Conterminous US

Paralleling the preceding the Chinese mainland ana
lysis, this section summarizes two principal analytical 
space-time descriptions of the initial diffusion of 
COVID-19 across the coterminous US during its first 
58 days (i.e. through 4/12/2020) in that country. As 
before, one is a simple frequentist RE description, 
whereas the other is a MESTF description, both 
including a hierarchical diffusion component. The 
total reported number of new cases for the 58-day 
time period is 551,563; Figure 7a is an epidemiological 
curve depicting the increases in number of new cases 
per 100,000 people during this time horizon plus 
many days beyond it. Because the number of cases 
increases over time with a trajectory initially tracking 
S-shaped exponential growth, immediately followed 
by a decline in number of cases, a logistic expression 
coupled with a quadratic function of the number of 
days since the first case of COVID-19 appeared in the 
country is a covariate (i.e. the daily average rate is cast 
as a function of time, and entered in its logarithmic 
form as a Poisson regression covariate, as for the 
China analysis) of the following form: 

μ̂day ¼ �
22:18609

1þ e6:97888

� �2

þ � 0:00037day2 þ
22:18609

1þ e6:97888� 0:18220�day

� �2

;

(8) 

which depicts the nonlinear trend line in Figure 7a, the 
country-wide national trend, the curve US govern
ment agencies seek to bend. The correspondence 

Figure 5. Selected specimen points-in-time MESTF maps for contagion combined with hierarchy effects for the 31-by-19 China 
space-time data cube; lighter gray denotes relatively small values. Left (a): day 1 (MC = −0.057). Middle (b): day 14 (MC = 0.143). 
Right (c): day 19 (MC = 0.117).
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between Equation (8) and the empirical time series 
scatterplot in Figure 7a yields a linear multiple corre
lation R2 of 0.95 (a bivariate regression describing 
observed rates with predicted rates yields an intercept 
term of −0.318, and a slope coefficient of 1.001, nearly 
identical to their respective theoretical counterpart 
values of 0 and 1). However, in the context of the 
space-time diffusion data, in accounts for roughly 
26% of the spatio-temporal variation (Table 6).

Table 5 tabulates results for the pure contagion and 
contagion-hierarchical cases, again revealing that 
a hierarchical structure eigenvector is most promi
nent, and that contagion spatial structure displaying 
strong positive spatial autocorrelation (Figure 8a) 
plays a very important role, in the US COVID-19 
diffusion RE term. The global contagion eigenvector 
Es;2 coupled with the regional contagion eigenvector 
Es;4 jointly try to compensate for the omitted domi
nant hierarchical eigenvector EH;2. Results of the zero- 
inflated Poisson regression model appearing in Table 6 
once more confirm that the addition of a hierarchical 

diffusion element to the analysis merely redistributes 
statistical explanation and facets between the SSRE 
and SURE terms without impacting upon their com
bined outcome represented by the composite RE term 
alone.

As noted previously, the hierarchical component in 
the MESTF model not only redistribute effects within 
a limiting composite term (Table 7, βH = 0), but also 
augments contagion diffusion eigenvectors with hier
archical diffusion eigenvectors. With nT = 2,842, the 
number of eigenvectors meeting the initial criteria MCj 
/MCmax ≥ 0.25 is 652 for the contagion autocorrelation 
component, with 84 contiguity eigenvectors selected by 
stepwise regression as being important, and 674 for the 
hierarchical autocorrelation component, with 87 hier
archical eigenvectors identified as being important, 
resulting in a total of 171 eigenvectors. Both Poisson 
regressions require quasi-likelihood estimation (Table 7 
reports the scaling factors). Figure 7c shows that the 
MESTF model that includes both a hierarchical compo
nent and a RE term once again shrinks the prediction 

Figure 6. Scatterplots of uncovered covariates of SSRE, SURE, and RE for the simple China space-time RE specification; red denotes 
a trend line, and solid black dots denote provincial observations. Left (a): SSRE versus living space per person. Middle (b): SURE 
versus the ratio of non-agricultural to agricultural population (NAP/AP). Right (c): RE versus a linear combination of the preceding 
two covariates coupled with the ratio of males to females (M/F).

Figure 7. The COVID-19 pandemic in the US. Left (a): an aggregate national time series of rates during the first 122 days, with its 
nonlinear trend line denoted with red. Middle (b): the simple space-time RE model (M-2) specification predicted versus observed 
number of cases per 100,000 people for the first 58 days. Right (c): the MESTF-RE model (M-4) specification predicted versus 
observed number of cases per 100,000 people for the first 58 days. Dashed lines denote 95% prediction, and shaded area denotes 
95% confidence, intervals around a solid trend line.
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dispersion as compared to the simple RE (M-2) speci
fication. The SSRE component contains only two hier
archical eigenvectors that account for a trivial amount 
of space-time variation in the number of new cases (as 
expected, given that the ESTF should account for all 
contagion and hierarchical spatial autocorrelation); the 
RE represents little spatial structure (Figure 8c; it 
accounts for a mere 18% of the RE variation, which is 
quite small), and accounts for only a trace amount of 
space-time variation (Table 7). Coupled with the dra
matic AICc and BIC decreases, these findings imply, as 
their counterparts do for China, that inclusion of 
a hierarchical diffusion component improves model 

diagnostics, inferences, and predictions; hierarchical 
autocorrelation matters.

As Table 7 shows that the slopes for the global time 
covariate, β̂day, are roughly the same across different 
models, which is a similar finding to that for China. 
Furthermore, the bivariate regression coefficients, β̂, 
once again indicate that the MESTF specification ren
ders the best model fit. As noted previously, zero 
inflation appears to induce deviations in the bivariate 
regression coefficients from their respective theoretical 
values.

Figure 9 portrays selected day map patterns of the 
ESTF. As the virus diffusion progressed, the roles 
played by the contagion and the hierarchical compo
nents changed, shifting from a mixture of contagion 
and hierarchical pathways for the first day (R2 = 0.973, 
with two contagion and five hierarchical eigenvector), 
to pure hierarchical structure for the 29th day (R2 = 
0.359, with four hierarchical eigenvectors), to 
a mixture of dominant spatial and hierarchical struc
ture for the 58th day (R2 = 0.841, with four spatial and 
two hierarchical eigenvector). Although this specifica
tion only slightly outperforms the simple space-time 
RE specification (Table 7), with the inclusion of an 
additional time-invariant RE term composed of a very 
weak SSRE and a stronger SURE component barely 
enhancing model fit, by accounting for less than 3% of 
the space-time variance, the almost identical results 
for both the China and US case studies allow a more 
refined understanding about the role of hierarchical 
structure in the diffusion of COVID-19 across 
a geographic landscape.

Table 5. Spatial autocorrelation index and linear regression R2 values for selected simple US RE decompositions.
Contagion diffusion only                                Contagion plus hierarchical diffusion

eigenvector MCj/MCmax

linear regression R2

eigenvector MCj/MCmax

linear regression R2

SSRE SURE SSRE SURE

Es,2 0.9483 0.2129 EH,2 0.7536 0.2176
Es,4 0.7040 0.1396 Es,13 0.2597 0.1328
Es,13 0.2597 0.1175 Es,2 0.9483 0.1045
Es,10 0.4139 0.0771 Es,1 1.0000 0.0823
Es,1 1.0000 0.0756 Es,10 0.4139 0.0653

Es,4 0.7040 0.0463
Es,11 0.3140 0.0275

Cumulative 0.7037 0.6227 0.3773 Cumulative 0.6763 0.3237

NOTE: contiguity MC1 = 1.016,14; hierarchical MC1 = 1.519,00.

Table 6. Selected Poisson regression results for the simple US 
space-time RE specification.

feature μday μday + SSRE μday + SSRE + SURE (M-2)

spatial autocorrelation only
intercept −3.415 −3.925 −4.086
deviance 17.77 13.23 8.58
pseudo-R2 0.263 0.726 0.896
AICc 744,754 170,247 70,000
BIC 744,772 170,271 70,030
π̂: zero inflation 0.044 0.028 0.022

spatial plus hierarchical autocorrelation
intercept −3.415 −3.939 −4.086
deviance 17.77 14.00 8.58
pseudo- R2 0.263 0.723 0.896
AICc 744,754 165,393 70,000
BIC 744,772 165,417 70,030
π̂: zero inflation 0.044 0.027 0.022

NOTE: the RE arithmetic mean is −2.383, with its Pr(K-S) = 0.001, where 
K-S denotes the Kolmogorov-Smirnov statistic (normality diagnostic 
here); −2.383 − 1.703 = −4.086. The SSRE and SURE means are 0. 

NOTE: AICc denotes the corrected Akaike Information Criterion; BIC 
denotes the Bayesian Information Criterion.

Figure 8. The contagion-hierarchical diffusion simple US space-time RE terms; lighter gray denotes relatively small values. Left (a): 
SSRE (MC = 0.697; R2 = 0.676). Left middle (b): SURE (MC = −0.189). Right middle (c): SSREESTF (MC = 0.305; R2 = 0.176). Right (d): 
SUREESTF (MC = −0.174).
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Finally, because the SSRE and SURE model com
ponents represent omitted variables, exploration of 
potential epidemiological factors using the simple 
space-time RE specification reveal some of the possible 
missing covariates. The 2018 percentage of population 
at least 85-years-of-age coupled with the 2019 number 
of deaths from influenza per 100,000 people correlate 
with the SSRE term, which relates to contagion and 
hierarchical autocorrelation, accounting about a fifth 
of its geographic variance (Figure 10a). The 2019 
number of deaths from influenza per 100,000 people 
coupled with the logarithm of the percentage of 2019 
national income generated by the retail sector of the 
US economy, a type of ubiquitous urban population-at 
-risk exposure and size index, accounts for more than 
10% of the simple mixed model SURE term 
(Figure 10b). Interestingly, only the logarithm of the 
percentage of 2019 national income generated by the 
retail sector of the US economy correlates with their 
linear combination, the RE term, suggesting that the 
other covariates are either masked in its aggregate or 
superfluous; again, future research needs to address 
this interpretation and meaning of RE terms issue. The 
screening of numerous other state-level covariates 
(e.g. temperature, number of days from the appear
ance of the first US case to a shelter-in-place order, 
percentage urban population) failed to identify other 
possible omitted variables. As is the case for the China 

analysis, because the two MESTF-RE components 
account for such a small proportion of space-time 
variation in the number of new cases, they are left as 
synthetic variates signifying rather minor omitted 
variable effects in that specification.

3.3 A Comparative Summary

An important objective for conducting scientific 
research is replicability: when addressing a particular 
scientific question, a need exists to find consistent 
empirical results traversing different case studies, 
each of which has its own dataset. This situation 
transcends generalizability of findings, and is reminis
cent of the age-old geography question about whether 
or not locations are unique, a question whose contem
porary answer entails mutually shared attributes and 
relationships across locations as well as sense-of-place 
type attributes and relationships somewhat exclusive 
to each location. Each of the two preceding COVID-19 
spread analyses, one for China and one for the US, 
offers evidence concerning replicability of the other 
COVID-19 spread investigation summarized in this 
paper. This section provides a comparison of these 
two case studies.

The two preceding nationwide analyses share var
ious commonalities. The national trend lines for both 
China and the US (Figures 3a and 7a) are quadratic in 

Table 7. Selected parameter estimation summary statistics for the US models.

Numerical characteristic RE specification (M-2)

MESTF versions

ESTF, βH = 0 (M-3) ESTF (M-3) ESTF + SSREESTF

ESTF + SSREESTF  

+ SUREESTF (M-4)

Scaling factor 1 1/18 1/20 1/5
# eigenvectors 6 contagion  

+ 1 hierarchical
145 contagion 95 contagion  

+ 93 hierarchical
ESTF: 119 contagion + 127 hierarchical; 

SSREESTF: 2 contagion + 2 hierarchical
Deviance statistic 8.57 32.20 13.82 28.35 5.82
Pseudo-R2 0.896 0.860 0.961 0.940 0.975
AICc 70,000 72,689 32,270 49,198 25,241
BIC 70,030 73,553 33,380 50,638 26,687
π̂: zero inflation 0.022 0.025 0.024 0.017 0.015
α̂ from Y = α + βbY −0.002 −0.047 −0.018 −0.075 −0.015

β̂ from Y = α + βbY 1.019 0.977 1.026 1.032 1.017

β̂day 

(standard error)
0.9617 (0.0021) 1.0458 

(0.0225)
1.0604 
(0.0039)

1.0801 
(0.0049)

0.9859 
(0.0051)

NOTE: AICc denotes the corrected Akaike Information Criterion; BIC denotes the Bayesian Information Criterion.

Figure 9. Selected specimen points-in-time MESTF maps for contagion combined with hierarchy effects for the 49-by-58 US space- 
time data cube; lighter gray denotes relatively small values. Left (a): day 1 (MC = 0.487). Middle (b): day 29 (MC = 0.100). Right 
(c): day 58 (MC = 0.747).
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nature, and confirm that both a contagion and 
a hierarchical diffusion pathway operate in each coun
try without acknowledging where new cases occur, 
and without compensating for them as omitted vari
ables when model M-1 is extended to models M-2 and 
M-4; the hierarchical element is unmistakable, and 
should not be ignored in models of disease spread 
(most publications cited in the literature review of 
this paper overlook it). The most suitable probability 
model description for both countries is a zero-inflated 
Poisson specification that accounts for the presence of 
positive spatial and temporal autocorrelation, with 
a rather stable estimate of roughly 1%-2% excess zer
oes; however, this percentage of zeroes is so small that 
a zero-inflated specification may not be warranted. 
The MESTF (M-4) specification outperforms the sim
ple space-time RE (M-2) specification based upon 
a suite of distinct metrics, in part because the con
structed ESTF relaxes the inflexibility of the time- 
invariant space-time RE term by capturing spatial 
autocorrelation fluctuations over time. Nevertheless, 
the SSRE-SURE decomposition of the simple RE term 
reflects approximately the same degree of positive 
spatial autocorrelation (as indexed by the MC) for 
both countries. Clues furnished by each of these com
ponents allowed successful identification of substan
tive epidemiological-relevant covariates to statistically 
explain a portion of them for both countries; these 
covariates constitute potential omitted variables. 
Furthermore, an additional RE term for the MESTF 
specification is trivial but significant for each country, 
with its inclusion improving a number of diagnostics 
(e.g. the deviance statistic). Finally, the MESTF-RE 
(M-4) hybrid specification accounts for approximately 
95% or more of the space-time variation in new case 
rates both for China and for the US.

A comparison of the two preceding analyses also 
uncovers an assortment of differentiators. Foremost is 

the number of days required for the spread of COVID- 
19 to all provinces/states in each country (e.g. 14 days 
for China, and 33 days for the US), somewhat of 
a surprise given that the two territories are roughly 
equal in area extent; similarly, the aggregate number of 
reported new cases (by the 19th day, China had 20,388, 
whereas the US had 111, recorded; by the 58th day, 
these recorded numbers respectively were 80,763 and 
551,563). The functional form (which would have the 
same identified specification as that for the US case if 
the initial China time series comprised considerably 
more than 19 days) as well as the role of the national 
trend line vary between these two countries: China’s 
epidemiological curve [Equation (7), Figure 3a] is only 
exponential in form, whereas the one for the US 
[Equation (8), Figure 7a] has an additional non- 
exponential quadratic term; and, the percent of space- 
time variance accounted for by the China trend line 
(model M-1) is scarcely 4% (Table 3), whereas it 
exceeds 25% (Table 6) for the US. The simple space- 
time RE model (M-2) specification decompositions 
yield essentially a 50 - 50 split for China, but roughly 
a 2/3-1/3 split for the US (see the values of SSRE and 
RE for the contagion plus hierarchical diffusion 
model, Tables 2 and 5). The 15.8% of space-time 
eigenvectors required to construct an ESTF for the 
US is conspicuously less than the 41.4% required for 
the China analysis, although weighting by the differ
ence in numbers of areal-unit-days increases it to 
a conspicuously larger 76.1%. Although the sets of 
identified SURE-SSRE covariates for the simple space- 
time RE (M-2) specification reflect potentially omitted 
epidemiological factors, they notably differ for the two 
countries: China has living space per person for its 
SSRE component, the ratio of non-agricultural to agri
cultural population for its SURE component, and the 
addition of the ratio of males to females for its aggre
gate RE term; the US has percentage of 2018 

Figure 10. Scatterplots of covariates of SSRE, SURE, and RE for the simple US space-time RE specification; red denotes a trend line, 
and solid black dots denote provincial observations. Left (a): SSRE versus a linear combination of the percentage of 2018 
population at least 85 years old plus the 2019 rate of influenza deaths. Middle (b): SURE versus a linear combination of the 
2019 rate of influenza deaths plus the 2019 national percentage of retail income. Right (c): RE versus the 2019 national percentage 
of retail income.
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population at least 85 years old plus the 2019 rate of 
influenza deaths for its SSRE component, the 2019 rate 
of influenza deaths plus the 2019 national percentage 
of retail income for its SURE component, and only the 
2019 national percentage of retail income for its aggre
gate RE term. Finally, after accounting for approxi
mately 97% of the space-time variance in new cases, 
the remaining overdispersion (i.e. extra-Poisson var
iation) for the US M-4 model is more than seven times 
that for the China M-4 model.

In summary, evidence exists supporting the repli
cation of primary findings about the spatial diffusion 
of COVID-19 across a national geographic landscape, 
one that also is nuanced and partially idiosyncratic in 
terms of individual locations.

4. Short-Term Forecasting

The preceding results describe new cases for the initial 
disease waves across two countries. However, the exis
tence of disease diffusion motivates ongoing compila
tions―released daily tabulations of new cases for 
many subsequent days immediately following those 
used to complete these preceding spatial analyses— 
which furnish a predictive testbed type of environ
ment for the two spatial statistical model specifica
tions. Because the respective time horizons cover the 
periods during which COVID-19 spread across the 
Chinese mainland and the coterminous US, forecasts 
based upon them entail only in situ expansion of the 
virus in each country’s population. Griffith and Chun 
(2014), and Griffith and Paelinck (2009), furnish the 
methodological foundation for this section; their 
approaches aim to protect against outlier forecasts 
(Cheng and Yang 2015). The tactic involves forecast
ing the total national number of new cases with a first- 
order autoregressive time series model. Next, each of 
these forecasted sums is divided by the sum of its 
corresponding forecasted spatial series total, with 
each of the forecasted spatial series then multiplied 
by its respective resulting weight (Table 8); this com
putational adjustment ensures that the total forecasted 
number of, here, predicted new cases is consistent 
with the total number of observed new cases. 
Meanwhile, Tan and Chen (2020) posit an important 
perspective characterizing this section of this paper: 
forecasting the geographic spread of a disease gov
erned by contagious and hierarchical pathways is ana
logous to weather forecasting in that only short-term 
forecasts tend to be reasonably accurate because 
a plethora of space-time varying interacting factors 
coupled with socio-economic/demographic and beha
vioral uncertainties operate in a dynamic geographic 
landscape. Accordingly, this section presents only 
about a week of forecasts.

Models M-2 and M-4 generate the best forecasts, 
and hence are the focus of this section. The most 

advantageous traits of the M-2 model are its simplicity 
and parsimony. The single most advantageous benefit 
of the M-4 model is its best overall diagnostics, parti
cularly efficiency attributable to a better accounting of 
variability and a better linear alignment between fitted 
and observed values.

4.1 China Mainland Provincial Level Forecasts

Producing eight days of forecasts avoids the two 
anomalous days in the China mainland dataset. 
Hubei Province (which houses Wuhan, the epicenter 
of COVID-19) is a blatant outlier (see Figure 11) in 
this forecasting exercise. In order to exemplify its 
impact upon forecast assessment, Table 8 reports fore
casting results with and without Hubei province. Not 
surprisingly, forecast goodness-of-fit results improve 
when the dataset contains Hubei Province. Figures 11a 
and 11c highlight this situation, resembling the fitting 
of a straight line to only two points.

Figure 11b as well as the bivariate regression results 
appearing in Table 8 imply that the simple space-time 
RE model (M-2) specification renders sounder fore
casts than the MESTF-RE (M-4) specification (e.g. its 
bivariate regression slope coefficients are closer to 
one); Figure 11d suggests that a one-step MESTF-RE 
forecast is good, but most of this model’s other fore
casts appear to suffer from a lack of inertia buildup 
[i.e. too few initial time periods, which Hanke and 
Wichern (2013) argue should be at least 50, rather 
than merely 19]. The simple space-time RE (M-2) 
specification scatterplots display good performance 
regardless of the inclusion of Hubei Province; the 
MESTF-RE (M-4) specification furnishes an inferior 
performance, with useless forecasts after two-steps 
ahead. The simple space-time RE (M-2) specification 

Table 8. Bivariate linear regression coefficients and R2 values 
for additional eight days of new cases forecasted by the two 
space-time models for China.

day weight

Complete data Data without Hubei Province

α̂ β̂ R2 α̂ β̂ R2

space-time RE model (M-2) specification
20 1.00718 −0.067 1.515 0.997 0.003 0.649 0.763
21 0.96099 −0.063 1.449 0.996 0.007 0.561 0.720
22 0.92702 −0.042 1.198 0.997 0.006 0.576 0.617
23 0.90307 −0.072 1.411 0.996 0.002 0.448 0.596
24 0.88760 −0.043 1.031 0.995 0.015 0.276 0.447
25 0.87955 −0.066 1.328 0.995 0.009 0.329 0.504
26 0.87942 −0.052 1.074 0.995 0.010 0.257 0.406
27 0.88686 −0.033 0.847 0.994 0.012 0.247 0.300
All −0.056 1.241 0.965 0.007 0.430 0.509

MESTF-RE model (M-4) specification
20 0.88258 −0.070 1.570 0.992
21 1.14938 −0.167 1.887 0.835
22 0.28942 0.096 0.426 0.049
23 0.00741 0.205 −0.043 0.002
24 0.00032 0.157 −0.030 0.002
25 0.00005 0.193 −0.064 0.003
26 0.00007 0.155 −0.056 0.003
27 0.01457 0.133 −0.070 0.005
All 0.130 0.256 0.048
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without Hubei Province also suggests that the rate 
forecasts deteriorate with the passing of time, an 
expectation alluded to by forecasts from the MESTF- 
RE (M-4) specification. Nevertheless, both specifica
tions stress the important diffusion role played by 
a geographic hierarchy pathway.

4.2 US State Level Forecasts

Producing eight days of US forecasts furnishes 
a benchmark for evaluating the preceding China 
COVID-19 diffusion results. The US time horizon is 
much longer, permitting an accumulation of inertia to 
occur in its geographic landscape, as is reflected in 
Table 9 tabulations, which summarize results for this 
case. Again, the simple space-time RE (M-2) specifica
tion outperforms the MESTF-RE (M-4) specification, 
but not as dramatically as in the China case. These 
types of differences also may signal mitigation strategy 
variations beyond the national trend, such as the level 
of quarantine. Both specifications render respectable 
forecasts, as is indicated by their R2 values. As with the 
China analysis, a clear deterioration of forecasts over 
the time horizon is not apparent.

Figure 12 furnishes scatterplots for the sets of forecasts, 
portraying relatively less dispersion by the forecasted 
simple RE rates from their actual rate counterparts 

(Figures 12a and 12c). This smaller dispersion also char
acterizes the selected best single day results (Figures 12b 
and 12d).

4.3 Forecast Propositions

The preceding analyses imply a number of salient 
forecast propositions. Foremost is the assertion that

a prevailing geographic hierarchy (e.g., one based upon 
a national urban system’s spatial structure) delivers an 
important conduit for channeling the diffusion of 
COVID-19 across an active geographic landscape.

In other words, based upon data analytic results for both 
the simple space-time RE (M-2) and the MESTF-RE 
(M-4) specifications, hierarchical diffusion pathways 
play an influential channeling role that cannot be ignored. 
Meanwhile, another appropriate postulate is that

the MESTF-RE (M-4) specification tends to supply 
a superior retrospective description of the COVID-19 
diffusion, whereas the simple space-time RE (M-2) 
specification tends to supply superior prospective short- 
term forecasts.

This contention is consistent with the IHME COVID- 
19 model specification, which is built upon this type of 
RE foundation. In addition, it echoes the MESTF-RE 
predictive failure highlighted by Table 7, and some
what refuted by predictive results reported in Table 8. 
Furthermore, Tables 7 and 8 imply the following 
hypothesis:

a direct relationship exists between the length of time 
series constituting a space-time series and the number 
of future time intervals for which the MESTF-RE (M-4) 
specification furnishes reasonable forecasts.

The time series length for China is 19, with two future 
reasonable forecasts, whereas the time series length for 
the US is 58, with at least six future reasonable forecasts.
A final prominent assertion is that:

both the simple RE (M-2) and MESTF-RE (M-4) spe
cifications need initial space-time data in order to 

Figure 11. Scatterplots with trend lines for the eight days of forecasts for China; each color denotes a different day. Left (a): all 
data; simple RE model. Left middle (b): Hubei Province removed; simple RE model. Right middle (c): all data; MESTF-RE model. 
Right (d): the overall best day forecast (#20) – the dashed lines denote 95% prediction, and the shaded area denotes 95% 
confidence, intervals around the solid trend line; MESTF-RE model.

Table 9. Bivariate linear regression coefficients and R2 values 
for additional eight days of new cases forecasted by the two 
space-time models for the US.

day

space-time RE model (M-2) 
specification

MESTF-RE model (M-4) 
specification

weight α̂ β̂ R2 weight α̂ β̂ R2

59 0.89475 5.294 0.750 0.643 1.22292 2.624 0.559 0.576
60 0.88254 4.342 0.888 0.787 1.81502 1.530 0.578 0.481
61 0.90881 4.645 0.951 0.797 1.98532 1.616 0.580 0.283
62 0.94501 4.995 0.963 0.791 2.39598 0.083 0.729 0.510
63 0.92727 5.180 0.816 0.708 2.29743 1.161 0.647 0.546
64 0.90666 5.325 0.778 0.666 2.78655 1.475 0.589 0.545
65 0.91004 4.850 0.705 0.665 3.48831 1.912 0.443 0.261
66 0.92536 7.805 0.754 0.475 2.58464 3.468 0.422 0.227
All 1.622 0.827 0.681 1.788 0.564 0.412
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provide forecasts, currently reducing them to uninfor
mative equations in the first days of the diffusion of 
a disease such as COVID-19. 

Space-time inertia must accumulate in an active geo
graphic landscape before forecasts with the two model 
specifications become feasible; Hanke and Wichern 
(2013) argue that at least 50 data collection points in 
time need to transpire. This feature reveals a simulation 
experiments gap requiring future research attention: 
systematic explorations of synthetic populations need 
to establish practical assumptions and their implied 
space-time trajectories for consideration at the very 
beginning of a disease’s diffusion. The subsequent con
ceptualization needs to incorporate, among other facets, 
the prevailing spatial hierarchy.

5. Conclusions

A primary finding of the research summarized in this 
paper is that inclusion of a hierarchical diffusion com
ponent matters when predicting spatial diffusion 
spread, at least of COVID-19; both the China and 
the US case studies support this contention, which 
seems intuitive, although apparently disregarded in 
most contemporary COVID-19 geographic spread lit
erature. This verdict confirms a contention repeatedly 
found in the spatial diffusion literature.

Both the simple space-time RE (M-2) and MESTF- 
RE (M-4) specifications furnish useful conceptualiza
tions for short-term forecasting of the magnitude and 
location of diffusion once a space-time dataset 
becomes available. In their present, simplest, and 
rather unsophisticated forms, these two formulations 
allow short-term (i.e. a few days to about a week) 
forecasts of COVID-19 diffusion. Each has its advan
tages and disadvantages. The simple space-time RE 
(M-2) specification presents fewer computational 
challenges, gives more respectable forecasts (e.g. mod
erately good agreement with data, consistently into the 
future), but merely reallocates latent spatial and hier
archical structure effects from a SURE to a SSRE term. 

Although this reallocation may be irrelevant to pre
diction/forecasting, ignoring it distorts understanding 
of the diffusion process. In contrast, the MESTF-RE 
(M-4) specification more accurately describes the 
space-time data used to estimate/calibrate its forecast
ing equation, enhancing a contagion diffusion descrip
tion with a supplemental hierarchical diffusion 
description, displays selected preferable properties 
(e.g. its bivariate regression slope coefficient is close 
to one; Tables 4 and 7), but produces forecasts that 
deteriorate more rapidly over time, with more fore
casts outside of its narrower prediction intervals (the 
general V-shape of these intervals reflects the Poisson 
random variable nature of the new cases counts). The 
quality of these forecasts seems on par with the pop
ular next-five-days meteorological weather forecasts 
offered to the general public. Furthermore, these spe
cific forecasts suggest a strategy of daily updating 
a disease diffusion model’s estimation in order to 
produce a continuous sequence of next-five-day fore
casts, similar to weather forecast practices. One 
important implication here is that both formulations 
could be bolstered by enhancing their respective 
specifications.

Another salient finding is that a preponderance of 
zeroes in the first half of a spatial diffusion process— 
representing locations to which the disease has not yet 
diffused—may not necessarily support the use of 
a zero-inflated counts model specification (e.g. 
Tables 3 and 7 report very small probabilities of an 
excessive number of zeroes, once a specification 
accounts for space-time autocorrelation). An impor
tant advantage of employing this specification is that it 
is pertinent during the initial spread of the disease 
during which many locations have yet to experience 
the disease, and as the relative number of zeroes 
diminishes, resulting in their appearing less excessive 
as more locations become initially contaminated by 
the disease, the estimate goes to zero (whereas, exclud
ing it from the model specification forces the Poisson 
probability model to treat all zeroes as a Poisson 

Figure 12. Scatterplots with trend lines for the eight days of forecasts for the US; each color denotes a different day. Left (a): all 
data; simple RE model. Left middle (b): the overall best day forecast (#62) – the simple RE model. Right middle (c): all data; MESTF- 
RE model. Right (d): the overall best day forecast (#62) – the MESTF-RE model. The dashed lines denote 95% prediction, and the 
shaded area denotes 95% confidence, intervals around the solid trend line.
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realization, rather than some as the outcome of not yet 
being exposed to the disease).

An integration of these myriad conclusions delivers 
three interesting propositions that hint at a future 
research agenda. One concerns the lead time necessary 
for generating space-time forecasts. Another focuses 
on the specification of the geographic hierarchical 
structure and the geographic resolution of the areal 
units. And the third consideration has to do with 
alternative spatial statistical model specifications.

The China data analysis gives rise to concerns over 
data quality and the estimation of μday. First, its 
national aggregate time series, the sequential data 
used to establish an epidemiological curve for the 
country, has two extreme outlier days that raise data 
quality questions. Results for the MESTF-RE forecasts 
tend to corroborate this questionable data quality con
tention (Table 8 versus Table 9 contents), although an 
alternative explanation for this particular anomalous 
outcome is that the China space-time series is too 
short to generate more extended forecasts. Second, 
considering a longer time horizon with the two aber
rations smoothed yields the following description of 
its national mean rate: 

μ̂day ¼ � � 0:00117ð12Þ2 þ
4:07033

1þ e5:66503� 0:24291ð12Þ

� �2

þ � 0:00117ðday þ 12Þ2 þ
4:07033

1þ e5:66503� 0:24291ðdayþ12Þ

� �2

(9) 

which has a pseudo-R2 of 0.94 with removal of the two 
outliers. In other words, although Equations (7) and 
(9) for China contain a time shift, Equations (8) and 
(9) argue for the existence of a common national 
number of new cases time series description.

The spatial weights matrices that capture the spatial 
autocorrelation information are at the core of the 
MESTF models. Specification of the hierarchical struc
ture and adoption of a specific areal partitioning 
directly affect the resulting spatial weights matrices. 
As we indicate in the methodology section, the hier
archical structures used in this paper were constructed 
based upon literature research coupled with necessa
rily being parsimonious. More realistic and sophisti
cated specifications of the hierarchical structures for 
both countries would surely further our understand
ing on the effects of hierarchical diffusion. For con
tagion diffusion, the effects of the geographic units, or 
spatial resolution, are another factor to be explored 
further. Both China and the US would profit from 
application of the two forecasting models at the county 
level. Doing so would enable an explicit integration of 
the respective national urban hierarchies into their 
hierarchical diffusion components. A fundamental 
drawback of this effort is that the space-time dataset 
dimensions would be approximately 2,851-by-19 for 

the China case, and 3,111-by-58 for the US case, 
requiring enormous structure matrices (whose dimen
sions are the square of this number) demanding 
numerically intensive computing; as the preceding 
space-time weights matrices indicate, part of the 
accompanying computational burden could be alle
viated by exploiting the Kronecker product operator: 
individual matrix eigenfunctions, which are much 
smaller in size, can be combined with Kronecker pro
ducts to produce the required extremely large space- 
time matrices.

With regard to spatial statistical model specifica
tions, a spatial panel model is an alternative to the 
GLMM approach employed in this paper (e.g. Elhorst 
2014), a viewpoint that warrants some commentary. 
Mechanically, they are very similar techniques. Both 
deal with doubly subscripted terms, with one usually 
being time for panel data; the mixed model concep
tualizations in this paper also have a time subscript. 
Their most important difference is their treatment of 
substantive covariates—in this paper, solely the 
national trend term—which when included in the 
GLMM corresponds to the panel data time compo
nent. The mixed model conceptualization posits 
a two-level regression: the first level is an individual 
regression for each areal unit, with the second level 
regression statistically explaining variation in the 
first-level regression coefficients. The panel data ran
dom effects model is equivalent to this formulation; 
these models diverge for the panel data fixed effects 
specification. Meanwhile, in order to maintain com
parability with a space-time autoregressive formula
tion (Cliff et al. 1975), the analysis summarized in 
this paper employed a mixed model conceptualiza
tion. If evidence supports a fixed effects specification 
—the preceding fixed and random effects compari
sons initialize this evaluation—future research should 
extend this study using a spatial panel analysis.

Besides the spatial panel approach, the introductory 
literature review highlights that existing relevant main
stream COVID-19 spatial analyses utilize mixed model 
specifications, Bayesian analysis, and space-time concep
tualizations. Findings summarized in this paper differ 
from those for these earlier publications, in part because 
our specification more closely resembles a spatial panel 
analysis design coupled with employing MESF and 
MESTF methodology in a fixed/random effects style. In 
doing so, we explicitly uncover a geographic hierarchical 
component to better understand the disease’s diffusion, 
and to demonstrably exploit RE terms to identify poten
tial omitted variables. Our approach also intentionally 
addresses excess zeroes.

Another valuable prospective to undertake would 
be to express the geographic spread in probabilistic 
terms, where probabilities are based upon both 
a contagion and a hierarchical configuration of geo
graphic space, and forecast the potential of leaps and 
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creeps of a disease across an active geographic land
scape. Moreover, once the initial COVID-19 case 
appeared in Wuhan or WA, respectively identifying 
the most probable sequence of its spread to the rest of 
Chinese mainland and the coterminous US, once 
more with a day-by-day conditional forecast of its 
next appearance locations (e.g. province or state), 
would have been tremendously beneficial for effec
tively reacting to the present pandemic.

Finally, the notion of Spatial Stratified 
Heterogeneity (SSH; i.e. geographic variance within 
more than between strata) may be germane to this 
type of analysis (Wang, Zhang, and Fu 2016), although 
to date it does not seem to have been applied to the 
geographic diffusion of diseases in any meaningful 
way. This is a potential future research topic, too.

In conclusion, the diffusion of COVID-19 across 
Chinese mainland as well as the coterminous US fol
lowed both contagion and hierarchical geographic 
pathways. A simple space-time RE (M-2) specification 
furnishes the best description of the space-time 
unfolding of this diffusion process, one that supports 
short-term forecasts. Many common realized features 
appear in the diffusion of COVID-19 across both 
national geographic landscapes, confirming the rea
sonableness of its IHME model description for the 
US, and suggesting the need to establish such 
a model for China. In addition, as the exploratory 
analyses of the RE terms reveals, this model formula
tion should be accompanied by a search for epidemio
logically relevant covariates that describe the sets of 
SSRE and SURE terms.

Notes

1. See https://www.peakbagger.com/pbgeog/histmetro 
pop.aspx

2. https://www.census.gov/data/tables/time-series/ 
demo/popest/2010s-total-metro-and-micro-statisti 
cal-areas.html

3. https://metrocosm.com/traffic-flow-maps/
4. https://www.nasa.gov/offices/oct/home/tech_life_ 

facet.html
5. https://www.earthlymission.com/wp-content/ 

uploads/2015/07/where-we-live-usa.jpg
6. https://dataverse.harvard.edu/dataset.xhtml? 

persistentId = doi:10.7910/DVN/MR5IJN
7. https://github.com/CSSEGISandData/COVID-19
8. http://www.stats.gov.cn/english/Statisticaldata/ 

CensusData/or http://www.stats.gov.cn/tjsj/pcsj/ 
rkpc/6rp/indexce.htm

9. https://www.census.gov/data/tables/time-series/ 
demo/popest/2010s-state-total.html

10. https://coronavirus.jhu.edu/us-map
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