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Abstract

A valuable target for advanced gravitational-wave detectors is the stochastic gravitational-wave background. The
stochastic background imparts a weak correlated signal into networks of gravitational-wave detectors, and so
standard searches for the gravitational-wave background rely on measuring cross-correlations between pairs of
widely separated detectors. Stochastic searches, however, can be affected by any other correlated effects that may
also be present, including correlated frequency combs and magnetic Schumann resonances. As stochastic searches
become sensitive to ever-weaker signals, it is increasingly important to develop methods to separate a true
astrophysical signal from other spurious and/or terrestrial signals. Here, we describe a novel method to achieve this
goal—gravitational-wave geodesy. Just as radio geodesy allows for the localization of radio telescopes, so too can
observations of the gravitational-wave background be used to infer the positions and orientations of gravitational-
wave detectors. By demanding that a true observation of the gravitational-wave background yield constraints that
are consistent with the baseline’s known geometry, we demonstrate that we can successfully validate true
observations of the gravitational-wave background while rejecting spurious signals due to correlated terrestrial
effects.
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1. Introduction

The recent Advanced Laser Interferometer Gravitational-Wave
Observatory (LIGO–Virgo observations of binary black hole
(Abbott et al. 2016a, 2017a, 2017b, 2017c) and binary neutron
star (Abbott et al. 2017d) mergers suggest that the astrophysical
stochastic gravitational-wave background may soon be within
reach (Abbott et al. 2016b, 2017e, 2017f, 2018a). As the
superposition of all gravitational-wave signals too weak to
individually detect, the stochastic gravitational-wave background
is expected to be dominated by compact binary mergers at
cosmological distances (Regimbau &Mandic 2008; Rosado 2011;
Zhu et al. 2011, 2013; Wu et al. 2012; Callister et al. 2016).
Although the stochastic background is orders of magnitude
weaker than instrumental detector noise, it will impart a weak
correlated signal to pairs of gravitational-wave detectors. The
stochastic background may therefore be detected in the form of
excess correlations between widely separated gravitational-wave
detectors (Christensen 1992; Allen & Romano 1999; Romano &
Cornish 2017).

Cross-correlation searches for the stochastic background rely
on the assumption that, in the absence of a gravitational-wave
signal, the outputs of different gravitational-wave detectors are
fundamentally uncorrelated. The LIGO-Hanford and LIGO-
Livingston detectors, for instance, are separated by 3000 km,
with a light travel time of ≈0.01 s between sites. One might
therefore reasonably expect them to be safely uncorrelated at

100 Hz~ ( ), in the frequency band of interest for ground-
based detectors.

In reality, however, terrestrial gravitational-wave detectors are
not truly uncorrelated. Hanford-Livingston coherence spectra
consistently show correlated features that, if not properly identified
and removed, can severely contaminate searches for the stochastic
gravitational-wave background (Covas et al. 2018). Schumann
resonances are one expected source of terrestrial correlation
(Schumann 1952a, 1952b). Global electromagnetic excitations in

the cavity formed by the Earth and its ionosphere, Schumann
resonances may magnetically couple to Advanced LIGO and
Advanced Virgo’s test mass suspensions and induce a correlated
signal between detectors (Christensen 1992; Thrane et al.
2013, 2014; Coughlin et al. 2016, 2018). Another expected source
of correlation is the joint synchronization of electronics at each
detector to Global Positioning System (GPS) time. In Advanced
LIGO’s O1 observing run, for instance, a strongly correlated 1Hz
comb was traced to blinking LED indicators on timing systems
independently synchronized to GPS (Covas et al. 2018).
Any undiagnosed terrestrial correlations may yield a false-

positive detection of the stochastic gravitational-wave back-
ground. While Schumann resonances and frequency combs
represent two known classes of correlation, others may also
exist. The validation of any apparent observation of the
stochastic background will therefore require us to answer the
following question. How likely is an observed correlated signal
to be of astrophysical origin, rather than a yet-unidentified
source of terrestrial correlation?
We currently lack the tools to quantitatively answer this

question. Searches for gravitational-wave transients can
address this issue through the use of time-slides: the artificial
time-shifting of data from one detector relative to another’s.
This process eliminates any coherent gravitational-wave signals
while preserving all other properties of the data, allowing
for accurate estimation of the false-positive detection rate. In
cross-correlation searches for the stochastic background,
however, time-slides would not only remove a gravitational-
wave signal but also any correlated terrestrial contamination.
Time-slides are therefore of limited use in searches for the
gravitational-wave background.
Using techniques borrowed from the field of radio geodesy,

here we develop a novel method to evaluate the astrophysical
significance of an apparent correlated stochastic signal. Just as
interferometric observations of the radio sky can serve to
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precisely localize radio telescopes on the Earth, we demonstrate
that measurements of the gravitational-wave background can
be similarly reverse-engineered to infer the separations and
relative orientations of gravitational-wave detectors. By
demanding that a true gravitational-wave background yield
results consistent with the known geometry of our detectors, we
can separate true gravitational-wave signals from spurious
terrestrial correlations.

First, in Section 2, we review search methods for the
stochastic gravitational-wave background and introduce grav-
itational-wave geodesy. In Section 3, we use geodesy as the
basis of a Bayesian test with which to reject non-astrophysical
signals, and in Section 4, we demonstrate this procedure using
simulated measurements of both a gravitational-wave back-
ground and terrestrial sources of correlation. Finally, in
Appendix C, we discuss potential complications and outline
directions for future work.

2. Gravitational-wave Geodesy

The stochastic background is typically described via its
energy-density spectrum Ω( f ), defined as the energy density
dρGW of gravitational waves per logarithmic frequency interval
dlnf (Allen & Romano 1999; Romano & Cornish 2017):
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The energy-density spectrum is made dimensionless by
dividing by the universe’s closure energy density cr =
H c G3 80

2 2 p( ), where H0 is the Hubble constant, c is the speed
of light, and G is Newton’s constant.

Searches for the stochastic background seek to measure Ω( f )
by computing the cross-correlation spectrum C fˆ ( ) between
pairs of gravitational-wave detectors:
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where ΔT is the time duration of data analyzed, and s fĨ ( ) is the
(Fourier domain) strain measured by detector I. Equation (2) is
normalized such that, for Advanced LIGO, the expectation
value of C fˆ ( ) is (Allen & Romano 1999)
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In the weak signal limit, the variance of C fˆ ( ) is given by
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where PI( f ) is the one-sided noise power spectral density of
detector I. Given a model C f ( ) for the energy-density
spectrum of the background, the signal-to-noise ratio (S/N) of
a stochastic measurement C fˆ ( ) is given by the inner product
S N C C2
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The factor γ( f ) appearing in Equation (3), called the normal-
ized overlap reduction function, encodes the dependence of the
measured correlations on the detector baseline geometry—the

detectors’ locations and relative orientations (Christensen 1992).
Advanced LIGO’s normalized overlap reduction function is given
by
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Here, nFI
A( ˆ) is the antenna response of detector I to

gravitational waves of polarization A, and xD is the separation
vector between detectors. The integral is performed over all sky
directions n̂ and a sum is taken over both the “plus” and “cross”
gravitational-wave polarizations. The leading factor of 5/8π
normalizes the overlap reduction function such that identical,
coincident, and co-aligned detectors would have γ( f )=1.
Overlap reduction functions are strongly dependent upon

baseline geometry—different pairs of gravitational-wave detec-
tors generically have very different overlap reduction functions.
To illustrate this, the overlap reduction function for the LIGO-
Hanford and LIGO-Livingston baseline is shown in blue in
Figure 1. The collection of gray curves, meanwhile, illustrates
alternative overlap reduction functions for hypothetical pairs of
detectors placed randomly on the surface of the Earth.
The strong dependence of γ( f ) on baseline geometry raises

an interesting possibility. Given cross-correlation measure-
ments C fˆ ( ) between two detectors, we can use the measure-
ments themselves to infer the baseline’s geometry. In the
electromagnetic domain, a very similar technique has long been
used in the field of geodesy: the experimental study of Earth’s
geometry. While most commonly used to study the radio sky,
very-long baseline interferometry can instead be used to
precisely localize radio telescopes on the Earth, allowing for
measurements of tectonic motion to better than ∼0.1 mm yr−1

(Sovers et al. 1998; Schuh & Behrend 2012). Similarly, here
we will use the gravitional-wave sky to determine our
detectors’ relative positions and orientations.
As an initial demonstration, the left panel of Figure 2 illustrates

a simulated observation of the stochastic gravitational-wave
background with design-sensitivity Advanced LIGO. We
assume a stochastic energy-density spectrum f 3.3W = ´( )

f10 25 Hz9 2 3- ( ) , chosen to yield S/N=10 after three years

Figure 1. Overlap reduction function γ( f ) (blue) for the Advanced LIGO’s
Hanford-Livingston detector baseline. Alternative baseline geometries have
different overlap reduction functions as illustrated by the collection of gray
curves, which show overlap reduction functions between hypothetical detectors
randomly positioned on Earth’s surface.
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of observation. The dashed curve indicates the mean correlation
spectrum C fá ñˆ ( ) corresponding to this injection, while the solid
trace shows a simulated cross-correlation spectrum C fˆ ( ) after
three years of observation. By fitting toC fˆ ( ) (as will be described
below in Section 3), we can attempt to estimate the geometry of
the LIGO Hanford-Livingston baseline. The resulting posterior on
the separation between the LIGO Hanford and Livingston
detectors is shown in the right panel of Figure 2. This posterior
is consistent with the true separation between detectors
(≈3000 km).

3. Model Selection

Of course, the physical separations between current gravita-
tional-wave detectors are already known to far better accuracy
than can be obtained through gravitational-wave geodesy.
Nevertheless, the ability to measure baseline geometry with the
gravitational-wave sky suggests a powerful consistency test for
any possible detection of the gravitational-wave background.

In the presence of an isotropic, astrophysical stochastic
background, the measured cross-correlation spectrum C fˆ ( ) must
exhibit amplitude modulations and zero-crossings consistent with
the baseline’s overlap reduction function. Thus, when using the
dataC fˆ ( ) to infer the baseline’s geometry, we must obtain results
that are consistent with the known separations and orientations of
the detectors. In contrast, spurious sources of terrestrial correlation
are not bound to trace the overlap reduction function. Hence, there
is no a priori reason that a correlated terrestrial signal should
prefer the true baseline geometry over any other possible detector
configuration.

We can more rigorously define this consistency check within
the framework of Bayesian hypothesis testing. Given a
measured cross-correlation spectrum C fˆ ( ), we will ask which
of the following hypotheses better describes the data.

1. Hypothesis g: the measured cross-correlation is con-
sistent with the true baseline geometry (and hence the
baseline’s true overlap reduction function).

2. Hypothesis Free : the cross-correlation spectrum is
consistent with a model in which we do not impose the

baseline’s known geometry, instead (unphysically) treat-
ing the detectors’ positions and orientations as free
variables to be determined by the data.

An isotropic, astrophysical stochastic signal will be consistent
with both g and Free (assuming that the true baseline
geometry is among the possible configurations supported in

Free ). As the simpler hypothesis, however,g will be favored
by the Bayesian “Occam’s factor” that penalizes the more
complex model. So a true isotropic astrophysical stochastic
background will favor g . A generic terrestrial signal, on the
other hand, is unlikely to follow the baseline’s true overlap
reduction function, and so will be better fit by the additional
degrees of freedom allowed in Free . Terrestrial sources of
correlation are therefore likely to favor Free .
This procedure is similar to the “sky scramble” technique

used in pulsar timing searches for very low-frequency
gravitational waves (Cornish & Sampson 2016; Taylor et al.
2017). In pulsar timing experiments, the analog to the overlap
reduction function is the Hellings and Downs curve, which
quantifies the expected correlations between pulsars as a
function of their angular separation on the sky (Hellings &
Downs 1983). By artificially shifting pulsar positions on the
sky, one can seek to disrupt this spatial correlation and produce
null data devoid of gravitational-wave signal but that retains
other (possibly correlated) noise features.
Given a tentative detection of the stochastic background, we

can compute a Bayes factor  between hypotheses g and
Free to determine which is favored by the data. Due to the

large number of time segments analyzed in stochastic searches,
cross-correlation measurements are well described by Gaussian
statistics. We therefore assume Gaussian likelihoods, such that
the probability of measuring C fˆ ( ) given a model spectrum
C f; Q( ) with parameters Θ is

p C C C C C, exp
1

2
, 7  Q µ - - Q - Q

⎡
⎣⎢

⎤
⎦⎥({ ˆ}∣ ) ( ˆ ( )∣ ˆ ( )) ( )

using the inner product defined in Equation (5).
For both hypotheses, we adopt a power-law form for the

background’s energy-density spectrum, defined by a reference

Figure 2. Left panel: simulated Advanced LIGO cross-correlation measurements (blue) following a three-year observation of an isotropic stochastic gravitational-
wave background. The injected background has energy-density f f3.33 10 25 Hz9 2 3W = ´ -( ) ( ) , corresponding to an expected S/N of 10 after three years of
observation. The dashed curve shows the expected cross-correlation in the absence of measurement noise, and the gray band indicates ±1σ uncertainties. Right panel:
posterior on the distance between the LIGO Hanford and Livingston detectors, obtained using the simulated cross-correlation measurements shown on the left. The
dashed line indicates the distance prior used and the vertical black line marks the true Hanford-Livingston separation. Using the gravitational-wave sky, we self-
consistently recover a posterior compatible with the true distance between detectors. Details regarding parameter estimation are explained in Section 3 below.
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amplitude Ω0 and a spectral index α:
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Our model for the cross-correlation spectrum under g is
therefore

C f f f, ; 25 Hz , 90 True 0a gW = Wg
a( ) ( ) ( ) ( )

where γTrue( f ) is the true overlap reduction function for the
given baseline.

For Free , we additionally need a parametrized model for
possible baseline geometries. We use the scheme illustrated in
Figure 3. Given two detectors on the surface of the Earth
(which we approximate as a sphere of radius R⊕= 6.4 ×
106 m), one can choose coordinates such that the first detector
lies at the pole and the second along the meridian (in the x–z
plane). We then have three remaining degrees of freedom: the
polar angle θ between detectors, and the angles f1 and f2
specifying the rotation of each detector about its local zenith.
Specifically, f1/2 are the angles between the detectors’ v̂ arms
(see Figure 3) and the y-axis. For convenience, below we will
work in terms of the distance x R2 sin 2qD = Å between
detectors, rather than the polar angle. All together, the model
cross-correlation spectrum under hypothesis Free is

C x f

x f f

, , , , ;

, , ; 25 Hz . 10
Free 0 1 2

1 2 0

a f f
g f f

W D
= D W a

( )
( ) ( ) ( )

We choose a log-uniform prior on Ω0 between (10
−12, 10−6),

extending well above and well below Advanced LIGO’s
sensitivity, and uniform priors on f1 and f2 on (0, 2π).
Similarly, we use a uniform prior on cos q between (−1, 1),
corresponding to a prior p(Δx)∝Δx on the distance between
detectors. We adopt a triangular prior on the background’s
spectral index: p 1 Maxa a aµ -( ) ∣ ∣ , with αMax=6. This
prior penalizes very steeply sloped backgrounds, while still
accommodating backgrounds that are much steeper than those
predicted from known sources.

4. Demonstration

To explore our ability to differentiate terrestrial correlation
from an astrophysical background, we will simulate Advanced
LIGO measurements of three different sources of correlation:
an isotropic stochastic background, a correlated frequency
comb, and magnetic Schumann resonances. These latter two
sources are terrestrial, and hence should disfavor g over

Free . We note that there exist dedicated strategies for
identifying and mitigating combs and Schumann resonances
(Thrane et al. 2014; Covas et al. 2018). Here, we use combs
and Schumann resonances simply as proxies for any as-of-yet
unknown sources of terrestrial correlation that could contam-
inate stochastic search efforts.
Below, we describe the model cross-correlation spectra

adopted for each test case:
1. Isotropic stochastic gravitational-wave background:We

assume that the stochastic gravitational-wave background is
well described by a power law with spectral index α=2/3, as
predicted for compact binary mergers. The corresponding
expected cross-correlation spectrum is

C f f
f
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, 11Stoch LIGO 0

2 3

gá ñ = W ⎜ ⎟⎛
⎝

⎞
⎠( ) ( ) ( )

where γLIGO( f ) is the overlap reduction function for the
Hanford-Livingston baseline (shown in Figure 1).
2. Frequency comb:We consider a correlated comb of

uniformly spaced lines, separated in frequency by Δf and with
heights set by C0:

C f C f f n f . 12
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Comb 0
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Note that the leading factor of Δf in Equation (12) ensures that
C0 is dimensionless. In the examples below, we use a comb
spacing of Δf=2 Hz.
3. Magnetic Schumann resonances:Given an environmental

magnetic field m f˜ ( ), the strain induced in a gravitational-wave
detector is s f T f m f=˜( ) ( ) ˜ ( ), where T( f ) is a transfer function
with units (strain/Tesla). If there exists a correlated magnetic
power spectrum M f m f m f1 2*= á ñ( ) ˜ ( ) ˜ ( ) between the sites of two
gravitational-wave detectors, then from Equation (2) the resulting
strain correlation will be of the form C f µˆ ( )
f T f M fRe3 2∣ ( )∣ ( ). We take M( f ) to be the median Schumann
auto-power spectrum measured at the Hylaty station in Poland, as
reported by Coughlin et al. (2018). This may not exactly match the
magnetic cross-power spectrum between LIGO-Hanford and
LIGO-Livingston. Most notably, we take ReM( f ) to be every-
where positive, as the (potentially frequency-dependent) sign of the
Schumann cross-power between the LIGO detectors is not well
known. Nevertheless, this model captures the qualitative features
expected of a Schumann signal. The magnetic transfer functions
for the LIGO detectors are expected to be power laws, but their
spectral indices are also not well known; we somewhat arbitrarily
choose T( f )∝f−2. Our Schumann signal model is therefore

C f S
f M f

M25 Hz

Re
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, 13Schumann 0

1
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-
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( )
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normalized so that S0 is the cross-correlation measured at the
reference frequency 25 Hz.
The mean cross-correlation spectra for the astrophysical,

Schumann, and comb models are shown in Figure 4. For each

Figure 3. Parametrized geometry of an arbitrary detector baseline on the
Earth’s surface. We initially choose coordinates such that the detectors lie in
the x–z plane, with one detector at the pole. The remaining degrees of freedom
are the polar angle θ between detectors, and the rotation angles f1 and f2
specifying the orientation of each detector.
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source of correlation, we simulate Advanced LIGO measurements
of 300 injected signals, with expected S/Ns ranging from 0.1 to
100. To produce each realization, we scale the amplitude
parameters (Ω0, C0, and S0) to obtain the desired S/N and add
random Gaussian measurement noise δC( f ) with variance given
by Equation (4). For each simulated measurement, we compute a
Bayes factor  between g and Free to determine whether the
data physically favors the correct detector geometry, or unphysi-
cally favors some alternate geometry. We compute Bayesian
evidences using MultiNest (Feroz & Hobson 2008; Feroz et al.
2009), an implementation of the nested sampling algorithm
(Skilling 2004, 2006). We make use of PyMultiNest, which
provides a Python interface to MultiNest (Buchner et al. 2014).

The resulting Bayes factors are plotted in Figure 5 as a
function of injected signal amplitude. As physically distinct
parameters, the power-law, Schumann, and comb amplitudes
should not be directly compared to one another. Instead, we
show the injections’ expected S/Ns (which can be directly
compared) on the upper horizontal axes. To compute these
S/Ns, we assume recovery with a power-law model of slope
α=2/3. Thus the S/Ns of the power-law injections are
optimal. While S/Ns for the comb and Schumann injections
are not optimal (as the recovery model and injections are not
identical), they do represent the S/Ns at which such signals
would contaminate searches for the stochastic background.

At S/N1 the log-Bayes factors for all three sources of
correlation cluster near ln 0 ~ . For an astrophysical signal
above S/N∼1, ln becomes positive, growing approxi-
mately linearly with log 0W . In contrast, ln falls exponentially
to large negative values as we increase the amplitude of
Schumann and comb injections. In Appendix A, we illustrate

Figure 4. Mean cross-correlation spectra used to simulate stochastic search
measurements with the Advanced LIGO Hanford and Livingston detectors. We
consider an isotropic astrophysical stochastic background, with energy density
Ω( f )∝f 2/3 (blue; Equation (11)). We additionally consider two sources of
terrestrial, non-astrophysical correlation: a signal due to magnetic Schumann
resonances (red; Equation (13)) and a correlated frequency comb with
Δf=2 Hz spacing (green; Equation (12)). The amplitudes of the spectra
have been scaled such that each is expected to be detected with S/N=10 after
three years of observation with design-sensitivity Advanced LIGO. For
comparison, the gray band illustrates the ±1σ uncertainties of a cross-
correlation search after three years of integration.

Figure 5. Log-Bayes factors between the physical and unphysical
hypotheses g and Free as a function of injection strength for isotropic
astrophysical backgrounds, Schumann resonances, and correlated combs
(Equations (11)–(13)). To enable a direct comparison between injection
types, the upper horizontal axes show the S/Ns of these injections. ln
increases linearly with the strength of an astrophysical injection, indicating
consistency with the correct (known) detector geometry. Meanwhile, ln
decreases exponentially for the terrestrial sources of correlation, disfavoring
the correct geometry. In these cases, at least, ln therefore successfully
discriminates between astrophysical and terrestrial sources of measured
cross-correlation.
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how the Laplace approximation can be used to derive these
approximate scaling relations.

It is instructive to look at parameter estimation results for
specific astrophysical, comb, and Schumann injections. In
Appendix B, we show posteriors on the parameters of Free
obtained using simulated observations of the stochastic back-
ground, a frequency comb, and a Schumann signal. As
suggested by Figure 5, an observation of an isotropic stochastic
background yields posteriors consistent with Advanced LIGO’s
correct geometry. The comb and Schumann observations, on
the other hand, produce unphysical posteriors on the positions
and orientations of the Advanced LIGO detectors.

Figure 5 demonstrates that gravitational-wave geodesy can be
used to successfully reject cross-correlation spectra that are
inconsistent with Advanced LIGO’s overlap reduction function.
However, there still remains the possibility of false positives: non-
astrophysical correlation spectra that, purely by chance, yield
posteriors consistent with Advanced LIGO’s geometry. To
carefully calculate the probability of a false positive at a particular
, one could analyze a set of random cross-correlation spectra
(e.g., drawn from the space of spectra supported by Free ) and
construct a null distribution of the resulting Bayes factors.
Alternatively, we can quickly estimate the probability of false
positives at a given ln using Figure 5(a). Given equal prior odds
forg and Free , the Bayes factors in Figure 5(a)may be directly
interpreted as odds ratios. A Bayes factor of ln 4 = (corresp-
onding to S/N≈ 10), for example, indicates e4 : 1 odds that the
given data is drawn from g versus Free . If taken at face value,
this implies that we would need to simulate e4+1≈56 random
correlation spectra with S/N=10 before finding one that yields
ln 4  by chance. In this way, our formalism not only offers a
means of rejecting non-astrophysical correlations, but can bolster
the statistical significance of a real stochastic signal.

5. Discussion and Conclusion

As searches for the stochastic gravitational-wave background
grow increasingly sensitive, we may be nearing the first detection
of the background. This prospect, though, comes with significant
risk, namely the high cost of a false positive detection. To
minimize this risk, it will be important to develop methods to
validate tentative detections of the gravitational-wave background.
Specifically, when assessing any apparent detection, it will be
necessary to argue not just that an observed correlation is
statistically significant, but that it is astrophysical—that it is due to
gravitational waves and not other terrestrial process. While well-
developed methods exist to quantify the statistical significance of
measured correlations, until now no generic method has existed to
gauge whether or not a statistically significant cross correlation is
indeed astrophysical.

In this Letter, we explored how gravitational-wave geodesy—
the use of the stochastic gravitational-wave background itself to
determine the positions and orientations of gravitational-wave
detectors—can form the basis for a novel consistency check on an
apparent detection of the background. If the measured correlation
between detectors truly represents a gravitational-wave signal,
then the reconstructed detector orientations and positions must be
compatible with their true known values. Correlations due to any
terrestrial source, on the other hand, have no reason to prefer the
baseline’s true geometry over any other possible arrangement. By
demanding that gravitational-wave geodesy yield results consis-
tent with the true baseline geometry, we can discriminate between
astrophysical and terrestrial sources of correlation. Used in this

fashion, gravitational-wave geodesy provides a second indepen-
dent measure of detection significance besides a standard S/N.
Our analysis has relied on several important assumptions.

First, we have assumed that our model energy-density spectrum
(a power law) is a good descriptor of the true stochastic
background. If our model were actually a poor fit to the true
signal, the geodesy technique might conceivably reject a true
astrophysical background. In Appendix C.1, we explore how
our results are affected if we mistakenly assume an incorrect
form for the background’s energy-density spectrum. We find
that our analysis remains robust, correctly classifying astro-
physical signals despite significant mismatches between our
model spectrum and the true stochastic signal.
Second, our definition of the overlap reduction function

(Equation (6)) makes several further implicit assumptions about
the nature of the stochastic background—that it is isotropic,
unpolarized, and composed purely of the tensor “plus” and
“cross” modes predicted by general relativity. These assumptions
may not be correct. Structure in the local universe may yield
anisotropies in the stochastic background (Cusin et al. 2018b;
Jenkins et al. 2018), and parity violations in the early universe
may give rise to polarization asymmetries (Crowder et al. 2013).
Modified theories of gravity, meanwhile, generally predict the
presence of additional non-standard gravitational-wave polariza-
tions (Callister et al. 2017; Abbott et al. 2018b).
The failure of any of these assumptions would modify the true

overlap reduction function, which might be naively misinterpreted
as disagreement with the detectors’ true geometry. The current
geodesy test, then, should only be applied to searches for signals
consistent with our assumptions (Abbott et al. 2017e). Never-
theless, as discussed in Appendix C.2, deviations from these
assumptions are most likely small and therefore should minimally
impact our analysis. Better yet, the geodesy test can be
straightforwardly extended to handle the case of more complex
stochastic backgrounds. As an example, in Appendix C.2 we
outline how our analysis can be modified to accommodate an
anisotropic stochastic signal. It remains a valuable future exercise
to quantitatively explore exactly how much anisotropy, parity
violation, and/or non-standard polarizations can be accommo-
dated by our isotropic geodesy test.
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Appendix A
Bayes Factor Scaling

The behavior of the Bayes factors in Figure 5 can be
understood using the Laplace approximation. The Laplace
approximation involves the following two assumptions.
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1. Our prior p Q( ∣ ) on the parameters of hypothesis  is
flat over a range ΔΘ, so that p 1Q = DQ( ∣ ) .

2. The likelihood p C , Q( ˆ∣ ) is strongly peaked about
maximum-likelihood parameter values Q and a peak
value . The width of the peak is δΘ.

Under these assumptions, a Bayesian evidence may be
approximated as

p C p C p d,

. 14

  



ò
d

= Q Q Q

»
Q

DQ

( ˆ∣ ) ( ˆ∣ ) ( ∣ )

( )

The leading term δΘ/ΔΘ can be interpreted as the volume of
the available parameter space that is compatible with the
measured data. Given two hypotheses A and B , the Bayes
factor between them becomes

p C

p C

. 15
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A A

B

A A

B B

A

B










d
d

=

»
Q DQ
Q DQ

( ˆ∣ )
( ˆ∣ )

( )

The ratio A B  is the standard maximum likelihood ratio
between A and B . The preceding term, known as the
“Occam’s factor,” penalizes the more complex hypothesis with
the larger available parameter space. Using the Laplace
approximation, our Bayes factor between hypotheses g and

Free may be written

p C

p C

C C C C

C C C C
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exp
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( ˆ ∣ ˆ )
( )

where Cg, for instance, is the maximum-likelihood fit to the
data under the g hypothesis.

First, consider the case of an isotropic astrophysical background
of amplitude Ω0. In this case, both hypotheses g and Free
can successfully fit the resulting cross-correlation spectrum.
Then C C C C 0Free- » - »gˆ ˆ and the likelihood ratio in
Equation (16) is approximately one. Because both models can fit
the data, posteriors on each parameter (of each hypothesis) are
peaked, with fractional widths (e.g., δθ/Δθ) that scale as
S N 1

0
1µ W- -/ . Then, in the presence of an astrophysical

background, we expect Equation (16) to scale as 0
3 µ W , or

ln 3 log , 170 ~ W ( )

up to additive constants.
Next, consider a correlated signal of terrestrial origin,

characterized by some amplitude C0. We will assume that g
is unable to accommodate the measured correlations, but that

Free , with a greater number of free parameters, can
successfully fit the data to some extent. Then C C 0Free- »ˆ
but C C 0- ¹gˆ . So the likelihood term in Equation (16) is not
constant, but will depend exponentially on C0. Ignoring the
leading Occam’s factors (which can scale at most as a power
law in C0), our Bayes factor becomes

C C C C

C C C C C C

exp
1

2

exp
1

2

1

2
, 18
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g g

g g g
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C C C C C Cln
1

2

1

2
. 19 ~ - + -g g g( ˆ∣ ˆ ) ( ˆ∣ ) ( ∣ ) ( )

The maximum likelihood value of Ω0 (the amplitude of our
model spectrum Cγ( f)) is given by (Callister et al. 2016)

f C

f f
. 200

2 3

2 3 2 3
W =

( ∣ ˆ )
( ∣ )

( )

Although this does scale proportionally with C0, in this
scenario our measured correlation C fˆ ( ) is assumed to have a
very different shape from an astrophysical power law. The
inner product f C2 3( ∣ ˆ ) may therefore be small, in which case
the cross term C Cg( ˆ∣ ) in Equation (19) may be neglected. As a

result, Cln 0
2 µ - , or

ln 10 . 21C2 log 0 µ - ( )

Appendix B
Parameter Estimation Results

In this section we show example parameter estimation results
obtained when analyzing simulated observations of a stochastic
gravitational-wave background, a correlated frequency comb,
and Schumann resonances, each with S/N=10. For each
injection, we perform parameter estimation under the Free
hypothesis, allowing the detector positions and orientations to
(unphysically) vary to best match the observed cross-correla-
tion spectrum. We implement parameter estimation using
MultiNest and PyMultiNest.
Figure 6 shows the three injections as well as the posteriors

obtained on each cross-correlation spectrum. With the five free
parameters afforded by Free , we succeed in reasonably fitting
each of the three spectra. Note that, although we appear to
poorly recover the correlated comb injection, the posterior on
C( f ) closely matches the frequency-averaged correlation.
Although the gravitational-wave background, comb, and

Schumann injections are all reasonably well fit under Free , they
yield very different posteriors on Advanced LIGO’s baseline
length Δx and detector orientation angles f1 and f2. Figure 7
shows the parameter posteriors given by the simulated gravita-
tional-wave background. The diagonal subplots show marginalized
one-dimensional posteriors on each parameter, while the central
subplots show joint posteriors between each pair of parameters.
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Figure 6. Reconstructed cross-correlation spectra using simulated Advanced LIGO observations of an isotropic gravitational-wave background (top panel), a
correlated frequency comb (middle panel), and Schumann resonances (bottom panel). The blue, green, and red curves show the injected gravitational-wave, comb, and
Schumann spectra, respectively, while the shaded bands indicate the ±1σ uncertainty region on the simulated measurements. We perform parameter estimation on
each injection using the Free hypothesis, fitting simultaneously for the spectral shape of a presumed stochastic background as well as the detectors’ separation and
orientations. The collections of gray curves show the resulting posteriors on the injected cross-correlation spectrum. Posteriors on the model parameters themselves are
shown in Figures 7–9.
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Figure 7. Example posterior on the stochastic background amplitude Ω0 and spectral index α, as well the separationΔx and rotation angles f1 and f2 of the Advanced
LIGO detectors, given a simulated three-year observation of an isotropic astrophysical background. The injected signal has spectral index α=2/3 and amplitude
Ω0=3.33×10−9, with an expected S/N of 10. Dashed lines in the one-dimensional marginalized posteriors show the prior adopted for each parameter, while solid
black lines mark the injected background parameters and the true Advanced LIGO geometry. In addition to recovering the amplitude and spectral index of the injected
stochastic signal, we obtain posteriors consistent with the true separation and rotation angles of the Advanced LIGO detectors.
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Figure 8. Same as in Figure 7 above, but for a simulated measurement of a correlated frequency comb with spacing Δf=2 Hz and height C0=7.83×10−9. The
comb’s amplitude is chosen so that it has S/N=10 after three years of observation. The correlated comb is not well fit by the Advanced LIGO overlap reduction
function, and so our recovered posteriors on Hanford and Livingston’s separation and rotation angles are inconsistent with their known values (solid black lines).
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The solid black lines indicate true parameter values and dashed
curves show the priors placed on each parameter. We recover
posteriors consistent with the amplitude and spectral index of the
injected stochastic signal. More importantly, we also obtain well-
behaved posteriors on Advanced LIGO’s geometry, with a
distance posterior (the same as shown in Figure 2) consistent with
the true separation between detectors. Interestingly, although
neither f1 nor f2 are well constrained, their difference is well
measured. This can be seen in the joint posterior between both
angles, which strongly supports diagonal bands of constant
f1−f2, including the true rotation angles of Hanford and
Livingston. We therefore have strong support for the correct
detector geometry, yielding a log-Bayes factor ln 3.6 =
( 36.6 = ) in favor of g .

Figure 8, meanwhile, shows parameter estimation results
obtained for the comb injection. As seen in Figure 6 above, we
have enough freedom to fit the (average) cross-correlation
spectrum, yielding reasonably peaked posteriors in Figure 8.
However, the posteriors on detector separation and orientation are
unphysical, excluding the known Hanford-Livingston geometry.
We therefore obtain ln 58.5 = - ( 3.9 10 26 = ´ - ). Similarly,
Figure 9 gives parameter estimation results for the Schumann
injection. Interestingly, the distance posterior for this injection is
consistent with the true Hanford-Livingston separation. The
rotation angle posteriors, though, again exclude the true detector
orientations, yielding ln 62.7 = - ( 5.9 10 28 = ´ - ).

Appendix C
Complications

We demonstrated in Section 4 that gravitational-wave
geodesy can be successfully used to discriminate between a
true stochastic gravitational-wave background and non-
astrophysical, terrestrial sources of correlation. Here, we
highlight important assumptions that have been made in our
analysis and discuss what to do should these assumptions
not hold.

C.1. Non-power-law Energy-density Spectra

In the main text, we have assumed that our model energy-
density spectrum (a power law) is a good description of the true
stochastic background. This assumption was guaranteed by
design, as our injected stochastic energy-density spectrum was
a power law. While most gravitational-wave sources are
predicted to yield power-law energy-density spectra in the
Advanced LIGO and Virgo band, there do exist speculative
sources like superradiant axion clouds (Brito et al.
2017a, 2017b) that may instead yield more complex spectra.
It is worthwhile to investigate how our method fares given

more complex energy-density spectra. Specifically, we will
consider observations of a broken power-law background with

Figure 9. Same as in Figures 7 and 8 above, for a simulated observation of a correlated Schumann signal of height S0=2.33×10−9, chosen to yield S/N=10 after
three years of observation. While the posterior does encompass the correct Hanford-Livingston separation, it is incompatible with the detectors’ true rotation angles.
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Correspondingly, we will adopt a broken power-law model for
Ω( f ) (with free parameters Ω0, f0, α1 and α2) in both
hypotheses g and Free . We simulate broken power-law
signals with slopes α1=1, α2=−1, a knee frequency
f0=30 Hz, and amplitudes Ω0 ranging from 10−11 to 10−7.
The recovered Bayes factors between g and Free are shown
in Figure 10(a). We see that, even given a more complex signal
and model, our method remains effective.

With a more complex model, is it also true that we can still
correctly reject terrestrial sources of correlation? To verify that
the additional free parameters afforded by the broken power-
law model do not lead to false acceptances, we again apply the

broken power-law model to Schumann correlations of various
strengths. As shown in Figure 10(b), the resulting Bayes factors
behave as expected, indicating inconsistency with Advanced
LIGO’s correct geometry.
We have shown that geodesy is a successful discriminator

between astrophysical and terrestrial correlations, even when
using a model that is more complicated than a simple power-
law spectrum. Crucially, though, we have still assumed the
correct energy-density spectrum, using the same model (a
broken power law) to both inject and recover simulated signals.
The most troubling case is the possibility of an incorrect model
—one that is a poor descriptor of the true stochastic
background. In this case, would we risk rejecting a real
stochastic background as a terrestrial signal?
To test this, we again simulate observations of a broken

power-law background, but recover them using an ordinary
power-law model, deliberately choosing an incorrect descrip-
tion of the simulated signal. Figure 11 illustrates the resulting
Bayes factors for simulated signals with α1 and α2 ranging
between −4 and 4. For each injection we chose f0=30 Hz,
placing the broken power-law’s “knee” in the center of the
stochastic sensitivity band, and scaled the amplitudes Ω0 such
that each observation has S/N=5 when naively recovered
with an ordinary power law. The vast majority of these
simulations yield positive log-Bayes factors, correctly classify-
ing these signals despite our poor choice of model. Note that
the injections falling along the line α1=α2 are power laws. If
the signal-model mismatch significantly degraded our ability to
classify stochastic signals, then Figure 11 would exhibit a color
gradient as we move perpendicularly off the α1=α2 line,
away from power laws and toward increasingly sharp signal
spectra. Instead, Figure 11 shows no such gradient, and our
method remains robust even in the case of poorly fitting
models.
We attribute this robustness to the fact that the isotropic

energy-density spectrum and baseline geometry have very
different effects on the expected cross-correlation spectrum
C f f fgá ñ = W( ) ( ) ( ). The energy density spectrum Ω( f ) is
everywhere positive, and so different energy-density spectra
can change only the amplitude of C( f ), not its sign. The sign of
C( f ) is set by the overlap reduction function, which alternates

Figure 10. Log-Bayes factors between hypotheses g and Free obtained when analyzing simulated astrophysical broken power-law signals (a) and magnetic
Schumann correlations (b), assuming a broken power law for our model energy-density spectrum. For each set of simulations, we assume three years of observation
with design-sensitivity Advanced LIGO. When adopting this more complex model, our Bayes factors still scale as expected, with the astrophysical signal preferring
g and the Schumann correlations preferring Free .

Figure 11. Log-Bayes factors between g and Free when deliberately
analyzing astrophysical broken power-law signals with an incorrect power-law
model. Each injected signal has a knee frequency of f0=30 Hz and an
amplitude Ω0 scaled such that the signal has S/N=5 after three years of
observation with design-sensitivity Advanced LIGO. Despite the signal-model
mismatch, we correctly classify the majority of the simulated signals, with no
evidence of increased false-dismissals due to the mismatch.
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between positive and negative values with zero-crossings fixed
by the baseline geometry. Even if our model for C( f ) assumes
an incorrect energy-density spectrum (as above), our g
hypothesis nevertheless predicts the correct zero-crossings of
the observed cross-correlation spectrum. This offers some
robustness against false-dismissal of a true stochastic signal,
even if our model energy-density spectrum is imperfect. At the
same time, it prevents us from over-fitting spurious terrestrial
correlations (whose sign is unrelated to the sign of γ( f)),
mitigating the risk of false positives.

C.2. Anisotropy, Polarization, and Modified
Theories of Gravity

We have additionally assumed that the stochastic gravita-
tional-wave background is isotropic, unpolarized, and free of
the non-standard “vector” and “scalar” gravitational-wave
polarizations predicted by modified theories of gravity. These
assumptions are unlikely to all be strictly true. The stochastic
background may be polarized by a variety of early universe
effects (Crowder et al. 2013), as well as the scattering of
gravitational waves by massive objects during propagation
(Cusin et al. 2018a). Meanwhile, the solar system’s motion
with respect to the cosmic microwave background will likely
impart a small apparent dipole moment to the stochastic
gravitational-wave background. Additional anisotropies might
arise from structure in the local universe (Cusin et al. 2018b;
Jenkins et al. 2018), together with the fact that, over a finite
integration time, we observe only a discrete set of gravitational-
wave events (Meacher et al. 2014).

A stochastic background containing anisotropies, polariza-
tion asymmetries, or non-standard polarizations would yield
correlations that are not consistent with the standard overlap
reduction function, but that instead obey some different
effective overlap reduction function. If we naively analyzed
such a signal with the method presented in the main text, we
would likely find a preference for the (unphysical) hypothesis

Free over g and risk rejecting the signal as terrestrial.
In practice, deviations from our ideal stochastic background

model are expected to be small, and so these complicating
factors are unlikely to significantly affect our analysis. For
example, the solar system moves with speed v⊕≈370 km s−1

with respect to the cosmic microwave background, and so the
stochastic background’s apparent dipole moment is a factor of
v⊕/c∼10−3 weaker than the isotropic monopole moment.
The intrinsic anisotropy and polarization of the astrophysical
background are also predicted to be small. Considering
multipole moments up to l=20 (the approximate angular
resolution limit of the LIGO Hanford-Livingston baseline;
Thrane et al. 2009), the observed energy density is expected to
vary by no more than ∼10% with direction (Cusin et al. 2018b;
Jenkins et al. 2018). Any net polarization arising from
scattering is predicted to be further suppressed by many orders
of magnitude in the frequency band of Advanced LIGO and
Virgo (Cusin et al. 2018a).

If any of these complications were a significant concern,
however, the formalism of Section 3 can be straightforwardly
extended to accommodate these effects. As an example, here
we demonstrate how to extend our formalism to the case of an
anisotropic stochastic background.

When allowing for anisotropy, the observed energy-density
of the stochastic background will generically have directional
dependence on our viewing angle n̂. It is generally assumed

that an anisotropic energy-density spectrum can be factored via
n nf H f, W =( ˆ ) ( ) ( ˆ), where H( f ) and n( ˆ) encode the

frequency and directional dependence of n f,W( ˆ ), respectively.
We can further decompose n( ˆ) into a sum of spherical
harmonics nYlm ( ˆ), giving (Allen & Ottewill 1997; Thrane et al.
2009; Abbott et al. 2017f)

n nf H f Y, 23
l m

lm
lm

,

åW =( ˆ ) ( ) ( ˆ) ( )

for some set of coefficients lm . We use the normalization
convention n nY d 1lm

2ò =∣ ( ˆ)∣ ˆ .
Over the course of a sidereal day, gravitational-wave

detectors have varying sensitivities to different sky directions
n̂. In the presence of an anisotropic background, the expected
cross-correlation between detectors is therefore time-depen-
dent:

C f t H f t f, , , 24
l m

lm
lm

,

å gá ñ =( ) ( ) ( ) ( )

where t is periodic over a sidereal day. This expression is
similar in form to Equation (3), but with a sum over spherical
harmonics and distinct (time-dependent) overlap reduction
functions for each spherical harmonic (Allen & Ottewill 1997;
Thrane et al. 2009)
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In Equation (25), the detectors’ antenna patterns nF t,i
A( ˆ ) and

separation vector x tD ( ) are time-dependent, rotating with the
Earth over the course of a sidereal day. The normalization of
Equation (25) is chosen such that monopole overlap reduction
function γ00(t, f ) reduces to Equation (6) above. The time-
dependence of Equation (25) can be conveniently factored out
via (Allen & Ottewill 1997; Thrane et al. 2009)

t f f e, 0, , 26lm lm
im t T2g g= p( ) ( ) ( )( )

where T is the length of one sidereal day.
If we incorrectly assumed an isotropic background and

averaged our cross-correlation measurements over a sidereal
day, we would measure cross correlation
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where the integral vanishes for all m 0¹ . Equation (27) does
not trace the isotropic overlap reduction function, but instead
follows a linear combination of the anisotropic γl0( f )ʼs. Thus,
if the background were significantly anisotropic (with some l0
comparable in magnitude to the monopole amplitude 00 ), we
would incorrectly conclude that the resulting correlated signal
is incompatible with our detector geometry and dismiss it as
terrestrial.
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In analogy to Equation (9), one could define hypothesis g
via the model

C f H f t f, ; ; , , 28lm

l m

lm
lm

,

True å gQ = Qg ( ) ( ) ( ) ( )

where t f,lm
Trueg ( ) is the baseline’s known overlap reduction

function for spherical harmonic (l, m) and Θ represents the
variables parametrizing H( f ). Similarly, the unphysical
hypothesis Free would become

C f
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