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Abstract

The paper proposes a new method for finding an initial soluth the problem of geometric
programming. The paper describes the conditions, under ligcgeometric programming problem [of
obtaining a positive solution of the matrix equation is solVéils equation describes the orthogonality
and normalization conditions. The authors gave an example dtatgm of the method in case of
solving the problem of minimizing the risk of the objectesafviolation for the level crossing (technidal
object with safety requirements).

Keywords: Geometric programming; posynomial; objectivection; dual problem; matrix; positive
solution; orthogonality; normalization.

1 Introduction

A number of practical problems are well approximatede¢ometric programming [1-5]. We can solve them
by quantifying into a mathematical optimization modelr Erample, geometric programming technique is
extremely useful in engineering analysis and design of &ektircuits (e.g., VLSI circuit component
sizing) [2] and in solving water resources optimization fgois [3]. It has been applied to a wide variety of
problems in economics as well [4].
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2 Main Results

Let us consider the problem of geometric programming [5]fifating the minimum of the objective
function (criterion)

y=f) = u (0 + up(X) + -+ up (3. M)

Let u;(x) be aposynomial
w@) = G TIRyx ", € > 0,i = 1,2,..,n,a; €R,

and the vectok = (xy, x,, ..., x,) Of some components (parametetsjs positive. An example of this
would be a common risk of the technical object safetlatiom; the criterion would be expressed as a sum
of particular risksu;(x) on a certain threats of safety violation. In this caseyould be the vector of
parameters of a business object protection systemmeltheory of reliability, the function (1) is met as a
common rate of failure, which expressed as a sum ofatepates of failura;(x). The coefficients;; and

C; are got by methods of linear regression analysis (ke [6

The matrix4A = (a;;) is called an exponent matrix. Suppose that the matrix Aheasankr(4) = m. This
can be written as a block matrix

a=(}) ()

Here, basiB is am x m matrix whose determinadet B # 0, and a submatri¥{ containsd rows of the
matrix A, which doesn’t belong to the basis B. The difficulty leigecharacterized by this numbér=n —
m. In the paper, we consider the cdse 1. The casel = 1 was considered in [7].

Let us consider d x m matrixQ = —H - B~* and ad x n matrix S= (Q,I;), wherel, is the identityd x d
matrix.

According to [8], the minimuny, = f(x,) of the objective function (1) and componests of optimal
vectorx, = (X.q, X.z, ..., X.qy) @re given in analytical form;

CinG* 8yVinkiy &
yo = M GOy = (P29 = 1,2,.m. 3)
13

Here, numberss; = §; are elements of vectos = (8,8, ..., 6 8ms1s s 0n) = (Oemy Oay) » Where
Omy = (61,682, ..., 8 ) @Ndd gy = (8pps1, Omezs -+ Omaq )» Which are found from the equation system:

Cm+i CjNSij-
Omy = (01,62, ., 0m) =0(ay* Qs 8ay 1t =1, Oy = T+ ' Hj'n=1(/1__éj)s”v 4
i=12,..,d.
M
The column vecton = <> consists of componenis, each of which is the sum of elements of row with
Ha

numberi of the matrixS = (s;;).

In expression (4), the first and the second ratios dledcthe orthogonality and normalization conditions
respectively, and the last onghird — expresses the condition of optimality.
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In [8], it was proven that the condition (4) expresseautiiqueness of the soluti@h> 0 if it exists. To get
6 in [8], the iteration method of solving was applied, athuses simple matrix operations at each step. The
convergence of this method has been proven.

In the formulas (4)4 denotes the maximum value

V=V = M GH% 5)

of the dual functioV (6) = ?=1(§_§)6i over the ared, = {§q) > 0: () = () Q, O¢qy " 1 = 1}

The following two systems of equations are used foriffigthe initial solution:
That is, we want to find a positive solution to the systériinear algebraic equations. It is known that this
problem still has no general solution, which would also bepabke computationally. In this paper, we

solve the problem under the assumptions that reflespicific features.

Consider the equation
- (B =
§:A=0 =6 (H)_o. 7

According to the theory of generalized inverse matrigsthe general solution of equation (7) is given by
the formula

8§ =7+ P(A), whereP(4) = (I, — A - A°) (8)

by selecting all possible values of an arbitrary vegtaf dimensiom. Here,A¢ represents the so-called S -
inverse matrix for A (see [9]). And in the our case (@% we use the relatiof¢ = (B~1, 0) to determine

AC. Becausel® - A = (B71,0) - (f]) = I,, AC is the left inverse oA. From this and (8), it follows that

o o)< ol )

, 0, o
=1 '(—H -mB—l ZXd) or=n-(Q Iy - ©)

wheren = (94,1, ...,14) IS an arbitrary vector.
From (9), it follows that = ( - Q,n) and, therefore,
N = (Bm+1,Omezs s Omea) = (8(a))- (10)

This is an arbitrary vectay with a set of component,,.4, 6,12, ) Omeq With numbersm +1,m +
2,...,m+ d = n of the vectos.

Let us say that numbeés, &, ..., 8, andd,,41, Sz, - Omaq @re the basic and free elements of the vector
§ respectively.
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Theorem 1.
Let the vecto$ be selected from the orthogonality condition (7). Then thewviafig statements will be true:
a) Vectord is written as
§=6a-S (11)
or
8amy) = 80y " Q. (12)

whered,,y ands ) are composed of basic and free (arbitrary) elementseofiectors. In the expression
(11) and (12), an arbitrary rodiy,, can be selected only as a positive ((rzief—- Oy S > 0) = 6@ > 0.

b) Normalization conditions type éf + §, + - + §,, = 1 is written by free elements of the vecgor
as

H1Ompr T U2 Oz + o+ g " Opya = 6y = 1. (13)
Moreover, the numbef,,,; > 0 and the coefficient; is equals to the sum of row elemesyitef the matrix
S, i.e.,/.li =5i1+5i2 ++Slm+ 1. (14)

c) The seb, of all admissible vector§ is given by (11) by specifying all possible valuestsffiee
elementsy,,,,; > 0 satisfying the condition (13).

The dual problem (5) has a feasible soluahand only if there exists a rodgy > 0, for which§,,y > 0.

d) If matrixQ comprises of at least one colugin< 0,i = 1,2, ..., m then the dual problem (5) hasn't
solution.

Proof.

a) Relation (11) follows directly from (9) and formula (18)ldws from the fact tha@ =68
e (=6 QD =00w"06a)) = (6m =da) Q).

Here, an arbitrary vectdi,, can be selected only as a positive one, because thestésKkind out the
conditions of orthogonality of vectofs= 64, - S > 0. Hence, we conclude thé;, > 0.

b) The normalization condition§-, §; = 1 can be written as
6:1=1=§S 1 =05y u, wherelis a column of ones from which we obtain the relatiof (
c) The set of all vecto® > 0 is found by the formula (11) by giving all possible valuéstofree
elementss,,,,; > 0, satisfying the condition (13), because the expression (128 igeneral solution

of the homogeneous equatién A = 0.

From this it follows, that the task (7) has a positigtution if and only if there exists a rady,, > 0, for
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d) Let the matrixQ contains a columg’/ < 0. Then according to (11), we obtain the expression
6; =y q’, in which, as shown abové(,d) > 0, hence, in view of thg/ < 0 it follows, that
6; < 0. Hence, we conclude that if the mat@hcomprises at least one columh< 0, then the
problem (7) has no solutions.

Theorem 2.

Let in the equatiod(g -1 = 1, vectoru > 0 and each columg’ of matrixQ have at least one positive
element. Then for the dual problem there exists a positivii@oliy given by the conditions:

1. We define the free variables row as
o= 4T (15)
(@ =5 H

where number = u¥ -y = p? + uZ + -+ p% > 0, (T denotes transposition). In this case, the following
conditions are truej;) > 0, §(qy -1 = 1.

2. Let the row{l;;ﬂ Q = (w1, Wy, .., wy) >0, ie., allw; >0,j=1,2,..,m. Then the following
inequality is true:

1
Smy =5 4" -Q >0, (18)
which means that the theorem is carried out.

3. Ifinthe row(w,, w,, ..., w,,) there is the elemeant; < 0, andq’ is corresponding to its column of
the matrixQ = (¢q" ¢* ...q™), then we use the expression for the elenigof the rows,,, in the
form of

Si=wi+n-q¢ —npw=—w-(np-—D+n4q,j=12,..,m, a7)
wheren = (4,15, ...,n4) iS an arbitrary vector.

If the columng’ has its componentgf < 0 then in (17) we believey; = 0. The rest of the elements of the
rown > 0 we believe are positivey, > 0. In this case, the number g’ > 0 for anyn, > 0.

Numbersy > 0 are chosen by the conditign x — 1 > 0 and we arrive at the inequalities
n°q)>0,—w; (- p—1)>0,

whence follows the relation (16).

Proof.

a) According to the theory of generalized inverse matri®sthe set of solutions of equation
8¢ay - # = 1 can be found by the formula

1 1
Say=5"u +n-Ua—5n-pu") (18)

by specifying all possible values of the random vegtor
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Provided thatn = 0, we get one of the solutiodg;) = i - ", satisfying the relation8g) > 0, §g) - = 1.
Further, according to (18), the arbitrary vecjce (14,15, ...,n4) > 0 is chosen.

b) For the rows,,,) of basic variables;, (j = 1,2, ..., m), we have
1 1
8my =0y Q=p""Q >+ Q-n-p-u" Q- (19)
ands; =wj+n-q' —n-prwj=—w-M-pu-—1+nq.
Let the row(w, , w,, ..., 0, ) > 0. Then we have the inequality (16), and in this cas¢hserem is true.

c) If the row(wl_wz_ ...,a)m,) has elements); < 0 andq’/ is corresponding to its column of the
matrix Q, we obtain an expression for eleménof the rowd,,,) in the form of relation (17).

If the columng’ has componen;ij < 0, then in (17) we believe; = 0. The remaining components of the
row n remain positiven, > 0. Since according to the hypothesis, the columrtontains at least one
eIementqij > 0, then in (17) the number- g/ > 0 for anyn, > 0. Choosing numbens, from the condition
n-u—1>0we arrive at the inequalities: g/ > 0, —w; (n-p—1) >0, so,§; > 0, whence follows the
relation (16).

3 Numerical Example

As example of using our method, let us consider a levedstrg as a technical object with safety
requirements. The method, based on the theory of geomatdcamming, allows us to solve the problem of
minimizing common risk of the object safety violationairsimple analytic form due to the choice of object
protection parameter set.

It is known that a large proportion of traffic incidents a@nmitted on level crossing. Thus a task of
ensuring safety on level crossing is relevant. Let usidens simplified formulation and solution of the
task, since the total volume of its solution is problematid it is beyond the scope of this article. Let's
consider the following safety threats:

» U, - drive over level crossing at red traffic light biasv abiding drivers (group I);

» U, - drive over level crossing at red traffic light bgréminal drivers (group Il);

» Uz - avehicle's collision on the level crossing thatsidestop the tracks;

* U, - a collision with a train and other traffic incidenivhich lead to a stop of transport on the
tracks.

The group Il consists of a car thieves, a drunk drivers, purstiedéhals and other persons whose contact
with the police is tantamount to arrest them. The groapnisists of violators which do not belong to the
group Il. Common threat U of object safety consiststdéast one of the thredt;, Uy, Us, Uy U = Y4 U;.

In fact, the number of threats is much more than 4. But to keep things simple we’ll asstivatn = 4.
This is enough to illustrate the proposed method of estimand minimizing the common risk of the object
safety violation.

Suppose that the everifsare independent,= 1, 2, 3,4, and the probability of common risk of the object
safety violationy = P(U) is expressed as a sum of particular rigks

Yy =uUy +UuU; + Uz + Uy,
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where u; = P(Uy) ; u; =PW)(1—uy) , uz=PU)A—u)(A—up) ; uy=PUIA—u)(d -
uy)(1 — u3).

Let in additionu, = P(U;) = —. Here, the fractlon— is an estimate of the particular rigk whereN; is
1

total number of vehicles which passed through the crgdemimeT (let us sayl=1 day) andV, is number

of drivers of the group | which passed through the crossingnfierT at red traffic lights.

Similarly, we can estimate other particular risks, ésampleu, = P(U,)(1 —u,) = % . The fraction
2

% is an estimate of the particular rigk, whereN, is total number of vehicles which passed through the

2
level crossing for tim& without violators of the group I. Her&f, is a number of drivers of the group I

which passed through the level crossing for tifva red traffic lights.

Suppose that the technical object has safety protectioansydthis system includes signal operator, road
inspectors, technical means of preventing violations sublarigrs, remote control system barriers etc.

Protection system gives us the following parameters:

x; — time of duty by road inspectors;
x, — time between duty;
x; — average time between the opening and closing of the tzarrie

In fact, the number of parametessis much more tham = 3. But this is enough to illustrate the estimation
method of minimizing the common risk of the objectesafviolation. A table below is a fragment of
empirical data for 10 observations, which we used foc#heulations. Each row in the table corresponds to
time T=1 day for situation on the level crossing.

Table 1. A fragment of empirical data for 10 observations

Probability of threats U; (multiplied by 10°) Protection parameters (in hours)
2.10 0.20 5.80 0.51 2.00 4.00 0.25
0.42 0.53 1.09 0.20 2.50 3.00 0.20
0.75 0.29 3.00 0.63 3.00 5.00 0.25
2.00 0.52 0.17 0.20 1.50 2.00 0.10
5.90 0.16 3.80 0.43 1.30 3.00 0.20
1.80 0.35 1.12 0.12 1.30 2.00 0.20
0.30 0.53 3.08 0.52 4.00 5.00 0.25
2.80 0.23 1.28 0.40 1.70 3.00 0.15
4.90 0.13 7.50 1.22 2.00 5.00 0.20
3.30 0.20 1.44 2.80 3.00 6.00 0.10

These data are mainly expert evaluation of road inspeaarbulance workers and staff which services the
technical means of preventing violations. We assume tihat vectorx = (x, x5, x3) of protection
parameters is positive.

Letw; = u;(x) be a posynomiat; =u;(x) = C; - [[3-, xja”, whereC; > 0,i =1,2,3, 4. (20)

Here, the matrixd = (a;;) is an exponent matrix. Taking the logarithm of both sid@0f, we obtain

Inu;(x) = a;o + a1 lnx, + aplnx, + aglnxs i =1,2,3,4, C; = e%o, (21)
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Thus, we can get coefficients; by methods of linear regression analysis [6]. Writingeeation (21) for
the first row of the Table 1, we obtain the expressiontfierrisk u;: in2,1 = a,, + a;1In2 + a,,In4 +
a,3ln0.25 ora,, + 0.693a,, + 1.386a,, — 1.386a,3 = 0.742. Similarly, writing the equation (21) for next
rows of the Table 1 we obtain an algebraic system

Fa' = w?, (22)

wherea® = (a;y, a1, a1, a;3)7 is a column of vector of required coefficients in theypasnialu, (x) =
(8 ) xja” , C; = e®10 and the matrix¥ is expressed &= (1, Inx!, Inx?, Inx®).

Moreover,1 is a column of oneslnxf,j = 1,2,3is a column for valuebux;, of theinx; for the parameter
x; and 10 observations = 1, 2, ..., 10w’ is a column for valuednu;;(x) of the lnu;(x); w' =
(In2.1 n0.42 .. In3.3)7.

According to the method of least squares (MLS) the solution d' of the equation (22) is given in the
form [6]:

at = Ftwl, (23)

HereF* is a pseudoinverse matrix of the matfix Calculation method for the matrl" is given in the
paper [9]. Recall that the pseudoinverse is defined anduerfiyy all matrices whose entries are real or
complex numbers. Vectai® is a solution of equation (22) under the condition that theaton is
compatibility. In the converse casg, is the best approximation solution (according to the MLS).

aio —-2.08
Thus, ¢t = Ftw! = (“11) =< > ) C, =e 2% =0.125 and the polynomiah,; is expressed as

a2
a3 -1
u; = uy(x) = 0.125x7*x3x31. Using the given calculate scheme for the risksus, u,, we obtain

Uy = Uy (x) = 0.8x2x52, uz = uz(x) = 6x72x3x2, uy = uy(x) = 0.004x7*x3x31. The common risk y
at the interval0, T] of time is expressed as

y = f(x) = 0.125x7*x3x31 4+ 0.8x7x52 + 6x72x3x3 + 0.004x ' x3x37.

Coefficient of variationV is used for precision and sufficiency to empirical dﬁta#%loo%. Here,

y =uy +u, +uy + 1. Moreoveray, i =1,2,3,4 is a sample mean of observations s =1,2,...,10;
andg? is the sum of the sample varianife= ||Fa! — wi||* /(N — m — 1), whereN is the total number of
observations andh is the number of protection parameters= 3); ||:|| means an Euclidean norm of vector;

6# is the sample variance according to the MLS-solutidghs= F*w! for the algebraic systefa’ = w?,
i=1,23,4.

In our caseg = /62 + 62 + 62 + 67 . We obtained = 9% as a result of data processing f&r100. This
good result gives acceptable discrepancy between tlegiexgntal and calculated data [9].

It should be found the vectar= x, > 0, with components;+ such that valug, = f(x,) is minimal. Using

exponentsy;;, we can write the exponent matfvas
a=(a;)=(8)= 22 neres = (2 22 0) and =
_(a”)_(H)_ _5 3 o | whereB= - andH = (-1 3 -1).
1 3 1 -2 3 2
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Note thatdetB # 0. It follows that exist an inverse matix *:

kiy kiz kis -2 —2 -1
B™ = ky kpp Ky |= -2 -5 -1
k31 ksp k33 1 3 1

In our case sub-matrif = (—1 3 —1) contains one row of matri&, which do not belong to the sub-
matrix B. Using the formulas from [8], we get subsidiary variabBlesThese ones are called dual variables
and are found by the formula

8T = (84, 6,5, 65, 64) = i(—H'B‘l, 1) =i(5, 22—7 3, 1), where the number =5 +22—7+ 341=2

5
=3
Therefores” = (8, 8, 8, 8,) = --(10,27,6,2),

27 6 2
2 8=, 8=

Thus,§; = e e

10
35002 =
Using the formulas of the paper [10], we can write the méhivaluey, multiplied by103 of the common
risk vy due to ¢;=0125 , (,=08,C;=6.0 C,=0.004 . In our case
5 o 27 6 z

_ 4 & L 0.125\45 E 45 E 45 (0,004\45 . .. . .
v =[li=s (5i) = (—10 ) (27) (6) (—2 ) = 1.55, i.,e. minimal value of the common risk is
0.155%. Then the protection parameters j = 1, 2, 3, can be found from the equations:

9
o = T3 (si-y*)kli _ (10-1.55 )‘2 (27-1.55)‘5 (6-1.55)_1.
=T, () T =
1 =1\ ¢ 45-0.125 4508 456 '
e = T3 (Si-y*)kﬂ' _ (10-1.55 )—2 (27-1.55)—5 (6-1.55)_1.
=T, () T =
2 =1\ ¢ 45:0.125 45:0.8 456 )
5y \k3i 10-1.55 \ (27-1.55\3 [6:1.55
% =T (37) 7 = () () (562)
3 =1\ ¢ 450125/ \ 45-0.8 456 /"

Thus, we get optimal protection parameters (in haugs¥F 1.98, x,« = 1.84, x5+ = 0.15. If the proposed
model is acceptable with respect to the coefficientvarfiation, it allows us to solve the problem of
minimizing common risk of the object safety violationairsimple analytic form due to the choice of object
protection parameter set.

4 Final Remarks

A new method for finding an initial solution in the problemgefometric programming was proposed. The
conditions were described, under which the geometric progragnpnablem of obtaining a positive solution
of the matrix equation can be solved.

There is an example of solving the problem of minimizing thle of the technical object safety violation. It

is worth noting that the proposed method allows to provideahgion to the technical problem in the form
of analytical expression (not in the traditional form ofagproximation).
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